Taurine Ameliorates Iron Overload-Induced Hepatocyte Injury via the Bcl-2/VDAC1-Mediated Mitochondrial Apoptosis Pathway
Iron overload can induce reactive oxygen species (ROS) burst and liver damage. Taurine can reduce ROS production and ameliorate liver injury caused by iron overload; however, the underlying molecular mechanism remains elusive. Herein, L02 cells treated with 120 μM iron dextran for 48 h showed marked...
Gespeichert in:
Veröffentlicht in: | Oxidative medicine and cellular longevity 2022, Vol.2022, p.4135752-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron overload can induce reactive oxygen species (ROS) burst and liver damage. Taurine can reduce ROS production and ameliorate liver injury caused by iron overload; however, the underlying molecular mechanism remains elusive. Herein, L02 cells treated with 120 μM iron dextran for 48 h showed marked oxidative stress damage and significantly increased apoptosis. Taurine protected hepatocytes by stabilizing mitochondrial membranes and resisting oxidative stress damage caused by iron overload. However, transfection with siRNA Bcl-2 virus abrogated the observed protective effects. Following treatment with taurine, B cell lymphoma-2 (Bcl-2) could inhibit the opening of the mitochondrial permeability transition pore (mPTP), subsequently stabilizing the mitochondrial membrane potential by interacting with voltage-dependent anion channel 1 (VDAC1) of mPTP. The present study is the first to clarify the mechanism underlying taurine-afforded hepatocyte protection against iron overload-induced oxidative stress via Bcl-2-mediated inhibition of mPTP opening and the antiapoptotic pathway. |
---|---|
ISSN: | 1942-0900 1942-0994 |
DOI: | 10.1155/2022/4135752 |