Century‐long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States

The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2022-04, Vol.28 (7), p.2505-2524
Hauptverfasser: Lu, Chaoqun, Yu, Zhen, Zhang, Jien, Cao, Peiyu, Tian, Hanqin, Nevison, Cynthia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2O emissions in the contiguous United States during 1900–2019. Newly developed geospatial data of land‐use history and crop‐specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc‐min by 5 arc‐min. The model simulation indicates that the U.S. soil N2O emissions totaled 0.97 ± 0.06 Tg N year−1 during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year−1 in the 1900s to 0.51 Tg N year−1 in the 2010s. More than 90% of soil N2O emission increase in agricultural soils is attributed to human land‐use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high‐emission factors, responsible for nearly two‐thirds of direct agricultural soil N2O emission increase since 1900. Our study suggests a large N2O mitigation potential in cropland and the importance of exploring crop‐specific mitigation strategies and prioritizing management alternatives for targeted crop types. We used a process‐based land ecosystem model and newly developed environmental input data to quantify the U.S. soil nitrous oxide (N2O) emissions during 1900–2019. This study estimated a national total soil N2O emissions of 0.97 ± 0.06 Tg N year−1 during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. We found a threefold increase in total soil N2O emission since 1900, 73% of which is from agricultural soils. Corn production accounted for nearly two‐thirds of direct agricultural so
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.16061