Clinic and genetic predictors in response to erenumab

Background and purpose Erenumab (ERE) is the first anticalcitonin gene‐related peptide receptor monoclonal antibody approved for migraine prevention. A proportion of patients do not adequately respond to ERE. Methods Prospective multicenter study involving 110 migraine patients starting ERE 70 mg mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of neurology 2022-04, Vol.29 (4), p.1209-1217
Hauptverfasser: Zecca, Chiara, Cargnin, Sarah, Schankin, Christoph, Giannantoni, Nadia Mariagrazia, Viana, Michele, Maraffi, Isabella, Riccitelli, Gianna Carla, Sihabdeen, Shairin, Terrazzino, Salvatore, Gobbi, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1217
container_issue 4
container_start_page 1209
container_title European journal of neurology
container_volume 29
creator Zecca, Chiara
Cargnin, Sarah
Schankin, Christoph
Giannantoni, Nadia Mariagrazia
Viana, Michele
Maraffi, Isabella
Riccitelli, Gianna Carla
Sihabdeen, Shairin
Terrazzino, Salvatore
Gobbi, Claudio
description Background and purpose Erenumab (ERE) is the first anticalcitonin gene‐related peptide receptor monoclonal antibody approved for migraine prevention. A proportion of patients do not adequately respond to ERE. Methods Prospective multicenter study involving 110 migraine patients starting ERE 70 mg monthly. Baseline socio‐demographics and migraine characteristics, including mean monthly migraine days (MMDs), migraine‐related burden (MIDAS [Migraine Disability Assessment scale] and Headache Impact Test‐6), and use of abortive medications, during 3 months before and after ERE start were collected. Real‐time polymerase chain reaction was used to determine polymorphic variants of calcitonin receptor‐like receptor and receptor activity‐modifying protein‐1 genes. Logistic regression models were used to identify independent predictors for 50% responder patients (50‐RESP) and 75% responder patients (75‐RESP). Results At month 3, MMDs decreased from 17.2 to 9.2 (p 
doi_str_mv 10.1111/ene.15236
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9306465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615299697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4246-8f359f18ecba809099decbe76c4ab29660eeb639df3f19f14f5771c7b93bee193</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMo7vpx8A9IwYseqknTps1FkGX9gEUveg5pOl0j3WRNWmX_vaOrooLJIRPy8DB5h5ADRk8ZrjNwcMqKjIsNMma5qFLGOdvEmhcsLRhlI7IT4xOlNCszuk1GPJeiwNuYFJPOOmsS7Zpkjp4e62WAxpreh5hYlwSIS-8iJL1PIIAbFrreI1ut7iLsf5675OFyej-5Tmd3VzeTi1lq8iwXadXyQrasAlPrikoqZYMllMLkus6kEBSgFlw2LW8ZgnlblCUzZS15DcAk3yXna-9yqBfQGHB90J1aBrvQYaW8tur3i7OPau5flORU5KJAwfGnIPjnAWKvFjYa6DrtwA9RZQJzk1LIEtGjP-iTH4LD7yHFcVNeMaRO1pQJPsYA7XczjKr3YSgMUX0MA9nDn91_k1_pI3C2Bl5tB6v_TWp6O10r3wDje5M-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636360381</pqid></control><display><type>article</type><title>Clinic and genetic predictors in response to erenumab</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zecca, Chiara ; Cargnin, Sarah ; Schankin, Christoph ; Giannantoni, Nadia Mariagrazia ; Viana, Michele ; Maraffi, Isabella ; Riccitelli, Gianna Carla ; Sihabdeen, Shairin ; Terrazzino, Salvatore ; Gobbi, Claudio</creator><creatorcontrib>Zecca, Chiara ; Cargnin, Sarah ; Schankin, Christoph ; Giannantoni, Nadia Mariagrazia ; Viana, Michele ; Maraffi, Isabella ; Riccitelli, Gianna Carla ; Sihabdeen, Shairin ; Terrazzino, Salvatore ; Gobbi, Claudio</creatorcontrib><description>Background and purpose Erenumab (ERE) is the first anticalcitonin gene‐related peptide receptor monoclonal antibody approved for migraine prevention. A proportion of patients do not adequately respond to ERE. Methods Prospective multicenter study involving 110 migraine patients starting ERE 70 mg monthly. Baseline socio‐demographics and migraine characteristics, including mean monthly migraine days (MMDs), migraine‐related burden (MIDAS [Migraine Disability Assessment scale] and Headache Impact Test‐6), and use of abortive medications, during 3 months before and after ERE start were collected. Real‐time polymerase chain reaction was used to determine polymorphic variants of calcitonin receptor‐like receptor and receptor activity‐modifying protein‐1 genes. Logistic regression models were used to identify independent predictors for 50% responder patients (50‐RESP) and 75% responder patients (75‐RESP). Results At month 3, MMDs decreased from 17.2 to 9.2 (p &lt; 0.0001), 59/110 (53.6%) patients were 50‐RESP, and 30/110 (27.3%) were 75‐RESP. Age at migraine onset (odds ratio [OR] [95% confidence interval (95% CI)]: 1.062 [1.008–1.120], p = 0.024), number of failed preventive medications (0.753 [0.600–0.946], p = 0.015), and MIDAS score (1.011 [1.002–1.020], p = 0.017) were associated with 75‐RESP. Among the genetic variants investigated, RAMP1 rs7590387 was found associated with a lower probability of being 75‐RESP (per G allele OR [95% CI]: 0.53 [0.29–0.99], p = 0.048]), but this association did not survive adjustment for confounding clinical variables (per G allele, 0.55 [0.28–1.10], p = 0.09]). Conclusions In this real‐word study, treatment with ERE significantly reduced MMDs. The number of failed preventive medications, migraine burden, and age at migraine onset predicted response to ERE. Larger studies are required to confirm a possible role of RAMP1 rs7590387 as genetic predictor of ERE efficacy. Clinical predictors of a 75% or higher reduction in monthly migraine days during 3‐month erenumab treatment were older age at migraine onset, lower number of failed preventive medications, and higher migraine burden as measured by the Migraine Disability Assessment score questionnaire. At multivariate analysis, no single nucleotide polymorphisms (SNPs) at calcitonin receptor like receptor (CALCRL) and RAMP1 were found to be an independent predictor of treatment response, despite a modest effect of SNPs cannot be ruled out due to the limited sample size of our study.</description><identifier>ISSN: 1351-5101</identifier><identifier>EISSN: 1468-1331</identifier><identifier>DOI: 10.1111/ene.15236</identifier><identifier>PMID: 34965002</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Alleles ; anti‐CGRP antibodies ; Calcitonin ; Confidence intervals ; Demographics ; Demography ; erenumab ; Genetic diversity ; Genetic variance ; Headache ; Impact tests ; Migraine ; Monoclonal antibodies ; Original ; Patients ; Polymerase chain reaction ; predictors ; Receptor activity modifying proteins ; Receptors ; Regression analysis ; Regression models ; Statistical analysis ; treatment response</subject><ispartof>European journal of neurology, 2022-04, Vol.29 (4), p.1209-1217</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of European Academy of Neurology.</rights><rights>2021 The Authors. European Journal of Neurology published by John Wiley &amp; Sons Ltd on behalf of European Academy of Neurology.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4246-8f359f18ecba809099decbe76c4ab29660eeb639df3f19f14f5771c7b93bee193</citedby><cites>FETCH-LOGICAL-c4246-8f359f18ecba809099decbe76c4ab29660eeb639df3f19f14f5771c7b93bee193</cites><orcidid>0000-0002-7554-0664 ; 0000-0002-9990-3431 ; 0000-0003-4356-8109 ; 0000-0002-1202-5534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fene.15236$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fene.15236$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34965002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zecca, Chiara</creatorcontrib><creatorcontrib>Cargnin, Sarah</creatorcontrib><creatorcontrib>Schankin, Christoph</creatorcontrib><creatorcontrib>Giannantoni, Nadia Mariagrazia</creatorcontrib><creatorcontrib>Viana, Michele</creatorcontrib><creatorcontrib>Maraffi, Isabella</creatorcontrib><creatorcontrib>Riccitelli, Gianna Carla</creatorcontrib><creatorcontrib>Sihabdeen, Shairin</creatorcontrib><creatorcontrib>Terrazzino, Salvatore</creatorcontrib><creatorcontrib>Gobbi, Claudio</creatorcontrib><title>Clinic and genetic predictors in response to erenumab</title><title>European journal of neurology</title><addtitle>Eur J Neurol</addtitle><description>Background and purpose Erenumab (ERE) is the first anticalcitonin gene‐related peptide receptor monoclonal antibody approved for migraine prevention. A proportion of patients do not adequately respond to ERE. Methods Prospective multicenter study involving 110 migraine patients starting ERE 70 mg monthly. Baseline socio‐demographics and migraine characteristics, including mean monthly migraine days (MMDs), migraine‐related burden (MIDAS [Migraine Disability Assessment scale] and Headache Impact Test‐6), and use of abortive medications, during 3 months before and after ERE start were collected. Real‐time polymerase chain reaction was used to determine polymorphic variants of calcitonin receptor‐like receptor and receptor activity‐modifying protein‐1 genes. Logistic regression models were used to identify independent predictors for 50% responder patients (50‐RESP) and 75% responder patients (75‐RESP). Results At month 3, MMDs decreased from 17.2 to 9.2 (p &lt; 0.0001), 59/110 (53.6%) patients were 50‐RESP, and 30/110 (27.3%) were 75‐RESP. Age at migraine onset (odds ratio [OR] [95% confidence interval (95% CI)]: 1.062 [1.008–1.120], p = 0.024), number of failed preventive medications (0.753 [0.600–0.946], p = 0.015), and MIDAS score (1.011 [1.002–1.020], p = 0.017) were associated with 75‐RESP. Among the genetic variants investigated, RAMP1 rs7590387 was found associated with a lower probability of being 75‐RESP (per G allele OR [95% CI]: 0.53 [0.29–0.99], p = 0.048]), but this association did not survive adjustment for confounding clinical variables (per G allele, 0.55 [0.28–1.10], p = 0.09]). Conclusions In this real‐word study, treatment with ERE significantly reduced MMDs. The number of failed preventive medications, migraine burden, and age at migraine onset predicted response to ERE. Larger studies are required to confirm a possible role of RAMP1 rs7590387 as genetic predictor of ERE efficacy. Clinical predictors of a 75% or higher reduction in monthly migraine days during 3‐month erenumab treatment were older age at migraine onset, lower number of failed preventive medications, and higher migraine burden as measured by the Migraine Disability Assessment score questionnaire. At multivariate analysis, no single nucleotide polymorphisms (SNPs) at calcitonin receptor like receptor (CALCRL) and RAMP1 were found to be an independent predictor of treatment response, despite a modest effect of SNPs cannot be ruled out due to the limited sample size of our study.</description><subject>Alleles</subject><subject>anti‐CGRP antibodies</subject><subject>Calcitonin</subject><subject>Confidence intervals</subject><subject>Demographics</subject><subject>Demography</subject><subject>erenumab</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Headache</subject><subject>Impact tests</subject><subject>Migraine</subject><subject>Monoclonal antibodies</subject><subject>Original</subject><subject>Patients</subject><subject>Polymerase chain reaction</subject><subject>predictors</subject><subject>Receptor activity modifying proteins</subject><subject>Receptors</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>treatment response</subject><issn>1351-5101</issn><issn>1468-1331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kU1LxDAQhoMo7vpx8A9IwYseqknTps1FkGX9gEUveg5pOl0j3WRNWmX_vaOrooLJIRPy8DB5h5ADRk8ZrjNwcMqKjIsNMma5qFLGOdvEmhcsLRhlI7IT4xOlNCszuk1GPJeiwNuYFJPOOmsS7Zpkjp4e62WAxpreh5hYlwSIS-8iJL1PIIAbFrreI1ut7iLsf5675OFyej-5Tmd3VzeTi1lq8iwXadXyQrasAlPrikoqZYMllMLkus6kEBSgFlw2LW8ZgnlblCUzZS15DcAk3yXna-9yqBfQGHB90J1aBrvQYaW8tur3i7OPau5flORU5KJAwfGnIPjnAWKvFjYa6DrtwA9RZQJzk1LIEtGjP-iTH4LD7yHFcVNeMaRO1pQJPsYA7XczjKr3YSgMUX0MA9nDn91_k1_pI3C2Bl5tB6v_TWp6O10r3wDje5M-</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Zecca, Chiara</creator><creator>Cargnin, Sarah</creator><creator>Schankin, Christoph</creator><creator>Giannantoni, Nadia Mariagrazia</creator><creator>Viana, Michele</creator><creator>Maraffi, Isabella</creator><creator>Riccitelli, Gianna Carla</creator><creator>Sihabdeen, Shairin</creator><creator>Terrazzino, Salvatore</creator><creator>Gobbi, Claudio</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7554-0664</orcidid><orcidid>https://orcid.org/0000-0002-9990-3431</orcidid><orcidid>https://orcid.org/0000-0003-4356-8109</orcidid><orcidid>https://orcid.org/0000-0002-1202-5534</orcidid></search><sort><creationdate>202204</creationdate><title>Clinic and genetic predictors in response to erenumab</title><author>Zecca, Chiara ; Cargnin, Sarah ; Schankin, Christoph ; Giannantoni, Nadia Mariagrazia ; Viana, Michele ; Maraffi, Isabella ; Riccitelli, Gianna Carla ; Sihabdeen, Shairin ; Terrazzino, Salvatore ; Gobbi, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4246-8f359f18ecba809099decbe76c4ab29660eeb639df3f19f14f5771c7b93bee193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alleles</topic><topic>anti‐CGRP antibodies</topic><topic>Calcitonin</topic><topic>Confidence intervals</topic><topic>Demographics</topic><topic>Demography</topic><topic>erenumab</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Headache</topic><topic>Impact tests</topic><topic>Migraine</topic><topic>Monoclonal antibodies</topic><topic>Original</topic><topic>Patients</topic><topic>Polymerase chain reaction</topic><topic>predictors</topic><topic>Receptor activity modifying proteins</topic><topic>Receptors</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>treatment response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zecca, Chiara</creatorcontrib><creatorcontrib>Cargnin, Sarah</creatorcontrib><creatorcontrib>Schankin, Christoph</creatorcontrib><creatorcontrib>Giannantoni, Nadia Mariagrazia</creatorcontrib><creatorcontrib>Viana, Michele</creatorcontrib><creatorcontrib>Maraffi, Isabella</creatorcontrib><creatorcontrib>Riccitelli, Gianna Carla</creatorcontrib><creatorcontrib>Sihabdeen, Shairin</creatorcontrib><creatorcontrib>Terrazzino, Salvatore</creatorcontrib><creatorcontrib>Gobbi, Claudio</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zecca, Chiara</au><au>Cargnin, Sarah</au><au>Schankin, Christoph</au><au>Giannantoni, Nadia Mariagrazia</au><au>Viana, Michele</au><au>Maraffi, Isabella</au><au>Riccitelli, Gianna Carla</au><au>Sihabdeen, Shairin</au><au>Terrazzino, Salvatore</au><au>Gobbi, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinic and genetic predictors in response to erenumab</atitle><jtitle>European journal of neurology</jtitle><addtitle>Eur J Neurol</addtitle><date>2022-04</date><risdate>2022</risdate><volume>29</volume><issue>4</issue><spage>1209</spage><epage>1217</epage><pages>1209-1217</pages><issn>1351-5101</issn><eissn>1468-1331</eissn><abstract>Background and purpose Erenumab (ERE) is the first anticalcitonin gene‐related peptide receptor monoclonal antibody approved for migraine prevention. A proportion of patients do not adequately respond to ERE. Methods Prospective multicenter study involving 110 migraine patients starting ERE 70 mg monthly. Baseline socio‐demographics and migraine characteristics, including mean monthly migraine days (MMDs), migraine‐related burden (MIDAS [Migraine Disability Assessment scale] and Headache Impact Test‐6), and use of abortive medications, during 3 months before and after ERE start were collected. Real‐time polymerase chain reaction was used to determine polymorphic variants of calcitonin receptor‐like receptor and receptor activity‐modifying protein‐1 genes. Logistic regression models were used to identify independent predictors for 50% responder patients (50‐RESP) and 75% responder patients (75‐RESP). Results At month 3, MMDs decreased from 17.2 to 9.2 (p &lt; 0.0001), 59/110 (53.6%) patients were 50‐RESP, and 30/110 (27.3%) were 75‐RESP. Age at migraine onset (odds ratio [OR] [95% confidence interval (95% CI)]: 1.062 [1.008–1.120], p = 0.024), number of failed preventive medications (0.753 [0.600–0.946], p = 0.015), and MIDAS score (1.011 [1.002–1.020], p = 0.017) were associated with 75‐RESP. Among the genetic variants investigated, RAMP1 rs7590387 was found associated with a lower probability of being 75‐RESP (per G allele OR [95% CI]: 0.53 [0.29–0.99], p = 0.048]), but this association did not survive adjustment for confounding clinical variables (per G allele, 0.55 [0.28–1.10], p = 0.09]). Conclusions In this real‐word study, treatment with ERE significantly reduced MMDs. The number of failed preventive medications, migraine burden, and age at migraine onset predicted response to ERE. Larger studies are required to confirm a possible role of RAMP1 rs7590387 as genetic predictor of ERE efficacy. Clinical predictors of a 75% or higher reduction in monthly migraine days during 3‐month erenumab treatment were older age at migraine onset, lower number of failed preventive medications, and higher migraine burden as measured by the Migraine Disability Assessment score questionnaire. At multivariate analysis, no single nucleotide polymorphisms (SNPs) at calcitonin receptor like receptor (CALCRL) and RAMP1 were found to be an independent predictor of treatment response, despite a modest effect of SNPs cannot be ruled out due to the limited sample size of our study.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34965002</pmid><doi>10.1111/ene.15236</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7554-0664</orcidid><orcidid>https://orcid.org/0000-0002-9990-3431</orcidid><orcidid>https://orcid.org/0000-0003-4356-8109</orcidid><orcidid>https://orcid.org/0000-0002-1202-5534</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1351-5101
ispartof European journal of neurology, 2022-04, Vol.29 (4), p.1209-1217
issn 1351-5101
1468-1331
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9306465
source Wiley Online Library Journals Frontfile Complete
subjects Alleles
anti‐CGRP antibodies
Calcitonin
Confidence intervals
Demographics
Demography
erenumab
Genetic diversity
Genetic variance
Headache
Impact tests
Migraine
Monoclonal antibodies
Original
Patients
Polymerase chain reaction
predictors
Receptor activity modifying proteins
Receptors
Regression analysis
Regression models
Statistical analysis
treatment response
title Clinic and genetic predictors in response to erenumab
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinic%20and%20genetic%20predictors%20in%20response%20to%20erenumab&rft.jtitle=European%20journal%20of%20neurology&rft.au=Zecca,%20Chiara&rft.date=2022-04&rft.volume=29&rft.issue=4&rft.spage=1209&rft.epage=1217&rft.pages=1209-1217&rft.issn=1351-5101&rft.eissn=1468-1331&rft_id=info:doi/10.1111/ene.15236&rft_dat=%3Cproquest_pubme%3E2615299697%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636360381&rft_id=info:pmid/34965002&rfr_iscdi=true