Branched Poly(Aryl Piperidinium) Membranes for Anion‐Exchange Membrane Fuel Cells

Anion‐exchange membrane fuel cells (AEMFCs) are a promising, next‐generation fuel cell technology. AEMFCs require highly conductive and robust anion‐exchange membranes (AEMs), which are challenging to develop due to the tradeoff between conductivity and water uptake. Here we report a method to prepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-02, Vol.61 (7), p.e202114892-n/a
Hauptverfasser: Wu, Xingyu, Chen, Nanjun, Klok, Harm‐Anton, Lee, Young Moo, Hu, Xile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anion‐exchange membrane fuel cells (AEMFCs) are a promising, next‐generation fuel cell technology. AEMFCs require highly conductive and robust anion‐exchange membranes (AEMs), which are challenging to develop due to the tradeoff between conductivity and water uptake. Here we report a method to prepare high‐molecular‐weight branched poly(aryl piperidinium) AEMs. We show that branching reduces water uptake, leading to improved dimensional stability. The optimized membrane, b‐PTP‐2.5, exhibits simultaneously high OH− conductivity (>145 mS cm−1 at 80 °C), high mechanical strength and dimensional stability, good processability, and excellent alkaline stability (>1500 h) in 1 M KOH at 80 °C. AEMFCs based on b‐PTP‐2.5 reached peak power densities of 2.3 W cm−2 in H2−O2 and 1.3 W cm−2 in H2‐air at 80 °C. The AEMFCs can run stably under a constant current of 0.2 A cm−2 over 500 h, during which the b‐PTP‐2.5 membrane remains stable. High‐molecular‐weight branched poly(aryl piperidinium) membranes with high conductivity (147 mS cm−1 at 80 °C) and excellent mechanical (26 % swelling ratio) and chemical stability have been prepared. Anion‐exchange membrane fuel cells (AEMFCs) using these membranes exhibit high peak power density (2.3 W cm−2) and durability (500 h).
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202114892