Expanding natural transformation to improve beneficial lactic acid bacteria
Abstract Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) fo...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology reviews 2022-07, Vol.46 (4), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Nowadays, the growing human population exacerbates the need for sustainable resources. Inspiration and achievements in nutrient production or human/animal health might emanate from microorganisms and their adaptive strategies. Here, we exemplify the benefits of lactic acid bacteria (LAB) for numerous biotechnological applications and showcase their natural transformability as a fast and robust method to hereditarily influence their phenotype/traits in fundamental and applied research contexts. We described the biogenesis of the transformation machinery and we analyzed the genome of hundreds of LAB strains exploitable for human needs to predict their transformation capabilities. Finally, we provide a stepwise rational path to stimulate and optimize natural transformation with standard and synthetic biology techniques. A comprehensive understanding of the molecular mechanisms driving natural transformation will facilitate and accelerate the improvement of bacteria with properties that serve broad societal interests.
The authors review the advantages of using natural DNA transformation to genetically improve lactic acid bacteria for human benefits by providing a step-by-step strategy to predict and trigger this natural gene exchange process. |
---|---|
ISSN: | 1574-6976 0168-6445 1574-6976 |
DOI: | 10.1093/femsre/fuac014 |