A Deep Learning and Handcrafted Based Computationally Intelligent Technique for Effective COVID-19 Detection from X-ray/CT-scan Imaging

The world has witnessed dramatic changes because of the advent of COVID19 in the last few days of 2019. During the last more than two years, COVID-19 has badly affected the world in diverse ways. It has not only affected human health and mortality rate but also the economic condition on a global sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of grid computing 2022-09, Vol.20 (3), p.23, Article 23
Hauptverfasser: Habib, Mohammed, Ramzan, Muhammad, Khan, Sajid Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The world has witnessed dramatic changes because of the advent of COVID19 in the last few days of 2019. During the last more than two years, COVID-19 has badly affected the world in diverse ways. It has not only affected human health and mortality rate but also the economic condition on a global scale. There is an urgent need today to cope with this pandemic and its diverse effects. Medical imaging has revolutionized the treatment of various diseases during the last four decades. Automated detection and classification systems have proven to be of great assistance to the doctors and scientific community for the treatment of various diseases. In this paper, a novel framework for an efficient COVID-19 classification system is proposed which uses the hybrid feature extraction approach. After preprocessing image data, two types of features i.e., deep learning and handcrafted, are extracted. For Deep learning features, two pre-trained models namely ResNet101 and DenseNet201 are used. Handcrafted features are extracted using Weber Local Descriptor (WLD). The Excitation component of WLD is utilized and features are reduced using DCT. Features are extracted from both models, handcrafted features are fused, and significant features are selected using entropy. Experiments have proven the effectiveness of the proposed model. A comprehensive set of experiments have been performed and results are compared with the existing well-known methods. The proposed technique has performed better in terms of accuracy and time.
ISSN:1570-7873
1572-9184
1572-9184
DOI:10.1007/s10723-022-09615-0