Combined proteomic and biochemical analyses redefine the consensus sequence requirement for epidermal growth factor-like domain hydroxylation
Epidermal growth factor-like domains (EGFDs) have important functions in cell–cell signaling. Both secreted and cell surface human EGFDs are subject to extensive modifications, including aspartate and asparagine residue C3-hydroxylations catalyzed by the 2-oxoglutarate oxygenase aspartate/asparagine...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2022-08, Vol.298 (8), p.102129-102129, Article 102129 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epidermal growth factor-like domains (EGFDs) have important functions in cell–cell signaling. Both secreted and cell surface human EGFDs are subject to extensive modifications, including aspartate and asparagine residue C3-hydroxylations catalyzed by the 2-oxoglutarate oxygenase aspartate/asparagine-β-hydroxylase (AspH). Although genetic studies show AspH is important in human biology, studies on its physiological roles have been limited by incomplete knowledge of its substrates. Here, we redefine the consensus sequence requirements for AspH-catalyzed EGFD hydroxylation based on combined analysis of proteomic mass spectrometric data and mass spectrometry–based assays with isolated AspH and peptide substrates. We provide cellular and biochemical evidence that the preferred site of EGFD hydroxylation is embedded within a disulfide-bridged macrocycle formed of 10 amino acid residues. This definition enabled the identification of previously unassigned hydroxylation sites in three EGFDs of human fibulins as AspH substrates. A non-EGFD containing protein, lymphocyte antigen-6/plasminogen activator urokinase receptor domain containing protein 6B (LYPD6B) was shown to be a substrate for isolated AspH, but we did not observe evidence for LYPD6B hydroxylation in cells. AspH-catalyzed hydroxylation of fibulins is of particular interest given their important roles in extracellular matrix dynamics. In conclusion, these results lead to a revision of the consensus substrate requirements for AspH and expand the range of observed and potential AspH-catalyzed hydroxylation in cells, which will enable future study of the biological roles of AspH. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/j.jbc.2022.102129 |