How Divalent Cations Interact with the Internal Channel Site of Guanine Quadruplexes

The formation of guanine quadruplexes (GQ) in DNA is crucial in telomere homeostasis and regulation of gene expression. Pollution metals can interfere with these DNA superstructures upon coordination. In this work, we study the affinity of the internal GQ channel site towards alkaline earth metal (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2021-11, Vol.22 (22), p.2286-2296
Hauptverfasser: Zaccaria, Francesco, Lubbe, Stephanie C. C., Nieuwland, Celine, Hamlin, Trevor A., Fonseca Guerra, Célia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation of guanine quadruplexes (GQ) in DNA is crucial in telomere homeostasis and regulation of gene expression. Pollution metals can interfere with these DNA superstructures upon coordination. In this work, we study the affinity of the internal GQ channel site towards alkaline earth metal (Mg2+, Ca2+, Sr2+, and Ba2+), and (post‐)transition metal (Zn2+, Cd2+, Hg2+, and Pb2+) cations using density functional theory computations. We find that divalent cations generally bind to the GQ cavity with a higher affinity than conventional monovalent cations (e. g. K+). Importantly, we establish the nature of the cation‐GQ interaction and highlight the relationship between ionic and nuclear charge, and the electrostatic and covalent interactions. The covalent interaction strength plays an important role in the cation affinity and can be traced back to the relative stabilization of cations’ unoccupied atomic orbitals. Overall, our findings contribute to a deeper understanding of how pollution metals could induce genomic instability. Pollution metals get intimate with G‐quadruplexes! Divalent pollution metal cations bind with higher affinities to G‐quadruplexes than biological occurring K+ and Na+. DFT analyses contribute to a deeper understanding of pollution metal genotoxicity by demonstrating that the enhanced affinities follow from more favorable electrostatic and donor‐acceptor orbital interactions.
ISSN:1439-4235
1439-7641
1439-7641
DOI:10.1002/cphc.202100529