Unraveling the MRI‐Based Microstructural Signatures Behind Primary Progressive and Relapsing–Remitting Multiple Sclerosis Phenotypes

Background The mechanisms driving primary progressive and relapsing–remitting multiple sclerosis (PPMS/RRMS) phenotypes are unknown. Magnetic resonance imaging (MRI) studies support the involvement of gray matter (GM) in the degeneration, highlighting its damage as an early feature of both phenotype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2022-01, Vol.55 (1), p.154-163
Hauptverfasser: Boscolo Galazzo, Ilaria, Brusini, Lorenza, Akinci, Muge, Cruciani, Federica, Pitteri, Marco, Ziccardi, Stefano, Bajrami, Albulena, Castellaro, Marco, Salih, Ahmed M.A., Pizzini, Francesca B., Jovicich, Jorge, Calabrese, Massimiliano, Menegaz, Gloria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background The mechanisms driving primary progressive and relapsing–remitting multiple sclerosis (PPMS/RRMS) phenotypes are unknown. Magnetic resonance imaging (MRI) studies support the involvement of gray matter (GM) in the degeneration, highlighting its damage as an early feature of both phenotypes. However, the role of GM microstructure is unclear, calling for new methods for its decryption. Purpose To investigate the morphometric and microstructural GM differences between PPMS and RRMS to characterize GM tissue degeneration using MRI. Study Type Prospective cross‐sectional study. Subjects Forty‐five PPMS (26 females) and 45 RRMS (32 females) patients. Field Strength/Sequence 3T scanner. Three‐dimensional (3D) fast field echo T1‐weighted (T1‐w), 3D turbo spin echo (TSE) T2‐w, 3D TSE fluid‐attenuated inversion recovery, and spin echo‐echo planar imaging diffusion MRI (dMRI). Assessment T1‐w and dMRI data were employed for providing information about morphometric and microstructural features, respectively. For dMRI, both diffusion tensor imaging and 3D simple harmonics oscillator based reconstruction and estimation models were used for feature extraction from a predefined set of regions. A support vector machine (SVM) was used to perform patients' classification relying on all these measures. Statistical Tests Differences between MS phenotypes were investigated using the analysis of covariance and statistical tests (P 
ISSN:1053-1807
1522-2586
DOI:10.1002/jmri.27806