Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells
Many cancers carry recurrent, change-of-function mutations affecting RNA splicing factors. Here, we describe a method to harness this abnormal splicing activity to drive splicing factor mutation-dependent gene expression to selectively eliminate tumor cells. We engineered synthetic introns that were...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2022-07, Vol.40 (7), p.1103-1113 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many cancers carry recurrent, change-of-function mutations affecting RNA splicing factors. Here, we describe a method to harness this abnormal splicing activity to drive splicing factor mutation-dependent gene expression to selectively eliminate tumor cells. We engineered synthetic introns that were efficiently spliced in cancer cells bearing
SF3B1
mutations, but unspliced in otherwise isogenic wild-type cells, to yield mutation-dependent protein production. A massively parallel screen of 8,878 introns delineated ideal intronic size and mapped elements underlying mutation-dependent splicing. Synthetic introns enabled mutation-dependent expression of herpes simplex virus–thymidine kinase (HSV–TK) and subsequent ganciclovir (GCV)-mediated killing of
SF3B1
-mutant leukemia, breast cancer, uveal melanoma and pancreatic cancer cells in vitro, while leaving wild-type cells unaffected. Delivery of synthetic intron-containing HSV–TK constructs to leukemia, breast cancer and uveal melanoma cells and GCV treatment in vivo significantly suppressed the growth of these otherwise lethal xenografts and improved mouse host survival. Synthetic introns provide a means to exploit tumor-specific changes in RNA splicing for cancer gene therapy.
Synthetic introns tailored for specific splice-factor mutations enable targeted cancer gene therapy. |
---|---|
ISSN: | 1087-0156 1546-1696 1546-1696 |
DOI: | 10.1038/s41587-022-01224-2 |