Isotope analysis of human dental calculus δ13 CO3 2- : Investigating a potential new proxy for sugar consumption
Dental calculus (mineralised dental plaque) is composed primarily of hydroxyapatite. We hypothesise that the carbonate component of dental calculus will reflect the isotopic composition of ingested simple carbohydrates. Therefore, dental calculus carbonates may be an indicator for sugar consumption,...
Gespeichert in:
Veröffentlicht in: | Rapid communications in mass spectrometry 2022-06, Vol.36 (11), p.e9286 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dental calculus (mineralised dental plaque) is composed primarily of hydroxyapatite. We hypothesise that the carbonate component of dental calculus will reflect the isotopic composition of ingested simple carbohydrates. Therefore, dental calculus carbonates may be an indicator for sugar consumption, and an alternative to bone carbonate in isotopic palaeodiet studies.RATIONALEDental calculus (mineralised dental plaque) is composed primarily of hydroxyapatite. We hypothesise that the carbonate component of dental calculus will reflect the isotopic composition of ingested simple carbohydrates. Therefore, dental calculus carbonates may be an indicator for sugar consumption, and an alternative to bone carbonate in isotopic palaeodiet studies.We utilised Fourier transform infrared attenuated total reflectance analysis to characterise the composition and crystallisation of bone and dental calculus before isotope analysis of carbonate. Using a Sercon 20-22 mass spectrometer coupled with a Sercon GSL sample preparation system and an IsoPrime 100 dual inlet mass spectrometer plus Multiprep device to measure carbon, we tested the potential of dental calculus carbonate to identify C4 resources in diet through analysis of δ13 C values in paired bone, calculus and teeth mineral samples.METHODSWe utilised Fourier transform infrared attenuated total reflectance analysis to characterise the composition and crystallisation of bone and dental calculus before isotope analysis of carbonate. Using a Sercon 20-22 mass spectrometer coupled with a Sercon GSL sample preparation system and an IsoPrime 100 dual inlet mass spectrometer plus Multiprep device to measure carbon, we tested the potential of dental calculus carbonate to identify C4 resources in diet through analysis of δ13 C values in paired bone, calculus and teeth mineral samples.The modern population shows higher δ13 C values in all three tissue carbonates compared to both archaeological populations. Clear differences in dental calculus δ13 C values are observed between the modern and archaeological individuals suggesting potential for utilising dental calculus in isotope palaeodiet studies. The offset between dental calculus and either bone or enamel carbonate δ13 C values is large and consistent in direction, with no consistent offset between the δ13 C values for the three tissues per individual.RESULTSThe modern population shows higher δ13 C values in all three tissue carbonates compared to both archaeological populat |
---|---|
ISSN: | 1097-0231 0951-4198 1097-0231 |
DOI: | 10.1002/rcm.9286 |