A deep learning framework for real‐time 3D model registration in robot‐assisted laparoscopic surgery

Introduction The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of medical robotics + computer assisted surgery 2022-06, Vol.18 (3), p.e2387-n/a
Hauptverfasser: Padovan, Erica, Marullo, Giorgia, Tanzi, Leonardo, Piazzolla, Pietro, Moos, Sandro, Porpiglia, Francesco, Vezzetti, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction The current study presents a deep learning framework to determine, in real‐time, position and rotation of a target organ from an endoscopic video. These inferred data are used to overlay the 3D model of patient's organ over its real counterpart. The resulting augmented video flow is streamed back to the surgeon as a support during laparoscopic robot‐assisted procedures. Methods This framework exploits semantic segmentation and, thereafter, two techniques, based on Convolutional Neural Networks and motion analysis, were used to infer the rotation. Results The segmentation shows optimal accuracies, with a mean IoU score greater than 80% in all tests. Different performance levels are obtained for rotation, depending on the surgical procedure. Discussion Even if the presented methodology has various degrees of precision depending on the testing scenario, this work sets the first step for the adoption of deep learning and augmented reality to generalise the automatic registration process.
ISSN:1478-5951
1478-596X
DOI:10.1002/rcs.2387