The time-varying networks of the wrist extension in post-stroke hemiplegic patients

Hemiplegia is a common dysfunction caused by the brain stroke and leads to movement disability. Although the lateralization of movement-related potential, the event-related desynchronization, and more complicated inter-regional information coupling have been investigated, seldom studies have focused...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive neurodynamics 2022-08, Vol.16 (4), p.757-766
Hauptverfasser: Li, Fali, Jiang, Lin, Zhang, Yangsong, Huang, Dongfeng, Wei, Xijun, Jiang, Yuanling, Yao, Dezhong, Xu, Peng, Li, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hemiplegia is a common dysfunction caused by the brain stroke and leads to movement disability. Although the lateralization of movement-related potential, the event-related desynchronization, and more complicated inter-regional information coupling have been investigated, seldom studies have focused on investigating the dynamic information exchanging among multiple brain regions during motor execution for post-stroke hemiplegic patients. With high temporal-resolution electroencephalogram (EEG), the time-varying network is able to reflect the dynamical complex network modalities corresponding to the movements at a millisecond level. In our present study, the wrist extension experiment was designed, along with related EEG datasets being collected. Thereafter, the corresponding time-varying networks underlying the wrist extension were accordingly constructed by adopting the adaptive directed transfer function and then statistically explored, to further uncover the dynamic network deficits (i.e., motor dysfunction) in post-stroke hemiplegic patients. Results of this study found the effective connectivity between the stroked motor area and other areas decreased in patients when compared to healthy controls; on the contrary, the enhanced connectivity between non-stroked motor areas and other areas, especially the frontal and parietal-occipital lobes, were further identified for patients during their accomplishing the designed wrist extension, which might dynamically compensate for the deficited patients’ motor behaviors. These findings not only helped deepen our knowledge of the mechanism underlying the patients’ motor behaviors, but also facilitated the real-time strategies for clinical therapy of brain stroke, as well as providing a reliable biomarker to predict the future rehabilitation.
ISSN:1871-4080
1871-4099
DOI:10.1007/s11571-021-09738-2