Comparison of Mechanical Properties of a Self-Adhesive Composite Cement and a Heated Composite Material

(1) Background: Due to the limitations of composite cements, the authors carried out tests to compare such materials with preheated composite materials because the latter may be an alternative to cements in the adhesive cementation procedure. (2) Methods: The materials used in the adhesive cementati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-06, Vol.14 (13), p.2686
Hauptverfasser: Skapska, Anastazja, Komorek, Zenon, Cierech, Mariusz, Mierzwinska-Nastalska, Elzbieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: Due to the limitations of composite cements, the authors carried out tests to compare such materials with preheated composite materials because the latter may be an alternative to cements in the adhesive cementation procedure. (2) Methods: The materials used in the adhesive cementation procedure, i.e., Enamel Plus Hri (Micerium, Avegno, Italy), a heated composite material, and RelyX U200 Automix (3M, Maplewood, MN, USA), a dual composite cement, were tested for microhardness, compressive strength, flexural strength, diametral compressive strength, and elastic modulus. Composite material was heated to the temperature of 50 degrees Celsius before polymerisation. (3) Results: Higher values of microhardness (by 67.36%), compressive strength (by 41.84%), elastic modulus (by 17.75%), flexural strength (by 36.03%), and diametral compressive strength (by 45.52%) were obtained using the Enamel Plus Hri composite material compared to the RelyX U200 self-adhesive cement. The survey results revealed statistically significant differences. (4) Conclusions: Due to its better mechanical properties, the heated composite material (Enamel Plus Hri) is a beneficial alternative to composite cements in the indirect restoration placement procedure. As the strength parameters of the heated composite material increase, a higher resistance to the compressive and bending forces present in the oral cavity, and hence a greater durability of the created prosthetic reconstructions can be expected.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14132686