Hydration and Compressive Strength of Activated Blast-Furnace Slag–Steel Slag with Na2CO3

Alkali-activated materials (AAMs) are regarded as an alternative cementitious material for Portland cement with regards to sustainable development in construction. The purpose of this work is to investigate the properties of activated blast-furnace slag (BFS)–steel slag (SS) with sodium carbonate (N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-06, Vol.15 (13), p.4375
Hauptverfasser: Wang, Yunfeng, Jiang, Bo, Su, Ying, He, Xingyang, Wang, Yingbin, Oh, Sangkeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alkali-activated materials (AAMs) are regarded as an alternative cementitious material for Portland cement with regards to sustainable development in construction. The purpose of this work is to investigate the properties of activated blast-furnace slag (BFS)–steel slag (SS) with sodium carbonate (NC), taking into account BFS fineness and Na2O equivalent. The hydration was investigated by rheological behavior and pH development. The hydrates were characterized by TG-DTG and XRD, and the microstructure was analyzed by SEM and MIP. Results showed that the rheology of activated BFS-SS pastes was well-fitted with the H-B model and affected by BFS fineness and NC mixture ratio. It was found that BFS fineness and NC ratio played a crucial role in the initial alkalinity of SS-BFS-based pastes. As such, lower BFS fineness and higher NC ratio can dramatically accelerate the formation of reaction products to endow higher mechanical strength of BFS-SS pastes. However, the effect of NC ratio on the microstructure development of BFS-SS based AAMs was more obvious than BFS fineness.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15134375