Comparative Study of the Marinobacter hydrocarbonoclasticus Biofilm Formation on Antioxidants Containing Siloxane Composite Coatings
No systematic study of antioxidant containing coatings and their anti-biofilm action has been reported so far. The utilization of antioxidants in protective coatings to inhibit marine biofilm formation is a current challenge. The aim of this preliminary study was to prepare, characterize and compare...
Gespeichert in:
Veröffentlicht in: | Materials 2022-06, Vol.15 (13), p.4530 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | No systematic study of antioxidant containing coatings and their anti-biofilm action has been reported so far. The utilization of antioxidants in protective coatings to inhibit marine biofilm formation is a current challenge. The aim of this preliminary study was to prepare, characterize and compare the efficiency of low adhesive siloxane composite coatings equally loaded with different antioxidants against mono-species biofilms formation. Most often participating in the marine biofilms formation, Marinobacter hydrocarbonoclasticus was the test bacterium. Both the biofilm covered surface area (BCSA) and corrected total cell fluorescence (CTCF) (by fluorescent microscopy) were selected as the parameters for quantification of the biofilm after 1 h and 4 h incubation. Differing extents of altered surface characteristics (physical-chemical; physical-mechanical) and the specific affection of M. hydrocarbonoclasticus biofilm formation in both reduction and stimulation, were found in the studied antioxidant containing coatings, depending on the chemical nature of the used antioxidant. It was concluded that not all antioxidants reduce mono-species biofilm formation; antioxidant chemical reactivity stipulates the formation of an altered vulcanization network of the siloxane composites and thus microbial adhesion which influences the surface characteristics of the vulcanized coatings; and low surface energy combined with a low indentation elastic modulus are probably pre-requisites of low microbial adhesion. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma15134530 |