Analysing the Porosity Distribution in Stone Surfaces by Means of Unilateral NMR after Long-Term Outdoor Weathering

Porosity changes in the near-surface area of sandstones due to long-term weathering can produce deterioration. Therefore, porosity analyses on weathered sandstones are significant for detecting possible influences on the pore structure. Classical methods for determining the porosity and pore size di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-06, Vol.15 (13), p.4604
Hauptverfasser: Groh, Melanie, Orlowsky, Jeanette, Schulte Holthausen, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porosity changes in the near-surface area of sandstones due to long-term weathering can produce deterioration. Therefore, porosity analyses on weathered sandstones are significant for detecting possible influences on the pore structure. Classical methods for determining the porosity and pore size distribution in sandstones can only investigate the entire sample volume. In contrast, in this publication, the porosity was analysed in 0.2 mm steps over a depth of 5 mm by means of single-sided NMR measurements on water-saturated sandstones under vacuum. Evaluations of Obernkirchener and Schleeriether Sandstones that were weathered outdoors in Germany for over 30 years are presented. The results showed that the water content in Vol.-% strongly correlated with the normalised NMR signal. The unweathered sandstones showed a uniform distribution of micro and capillary pores throughout the stone depth. As a result of 30 years of outdoor weathering, changes in the pore structure occurred at the sandstone surface due to weathering down to depths of about 0.6 mm. The porosity of the Schleeriether Sandstone samples, mainly the microporosity, clearly increased in this region. Due to the dominance of capillary pores in the Obernkirchener Sandstone, the changes were not as pronounced, but a shift towards smaller pores in the surface area was observable.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15134604