Self-Adaptation Resource Allocation for Continuous Offloading Tasks in Pervasive Computing

Advancement in technology has led to an increase in data. Consequently, techniques such as deep learning and artificial intelligence which are used in deciphering data are increasingly becoming popular. Further, advancement in technology does increase user expectations on devices, including consumer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2022-06, Vol.2022, p.8040487-13
Hauptverfasser: Ehsan, Aiman, Haider, Khurram Zeeshan, Faisal, Shahla, Zahid, Faisal Maqbool, Wangari, Isaac Mwangi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advancement in technology has led to an increase in data. Consequently, techniques such as deep learning and artificial intelligence which are used in deciphering data are increasingly becoming popular. Further, advancement in technology does increase user expectations on devices, including consumer interfaces such as mobile apps, virtual environments, or popular software systems. As a result, power from the battery is consumed fast as it is used in providing high definition display as well as in charging the sensors of the devices. Low latency requires more power consumption in certain conditions. Cloud computing improves the computational difficulties of smart devices with offloading. By optimizing the device’s parameters to make it easier to find optimal decisions for offloading tasks, using a metaheuristic algorithm to transfer the data or offload the task, cloud computing makes it easier. In cloud servers, we offload the tasks and limit their resources by simulating them in a virtual environment. Then we check resource parameters and compare them using metaheuristic algorithms. When comparing the default algorithm FCFS to ACO or PSO, we find that PSO has less battery or makespan time compared to FCFS or ACO. The energy consumption of devices is reduced if their resources are offloaded, so we compare the results of metaheuristic algorithms to find less battery usage or makespan time, resulting in the PSO increasing battery life or making the system more efficient.
ISSN:1748-670X
1748-6718
DOI:10.1155/2022/8040487