Effect of Relaxations on the Conductivity of La1/2+1/2xLi1/2–1/2xTi1–xAlxO3 Fast Ion Conductors

Perovskite-type solid-state electrolytes, Li 3 x La 2/3– x TiO 3 (LLTO), are considered among the most promising candidates for the development of all-solid-state batteries based on lithium metal. Their high bulk ionic conductivity can be modulated by substituting part of the atoms hosted in the A-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2022-06, Vol.34 (12), p.5484-5499
Hauptverfasser: Vezzù, Keti, García-González, Ester, Pagot, Gioele, Urones-Garrote, Esteban, Sotomayor, Maria Eugenia, Varez, Alejandro, Di Noto, Vito
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perovskite-type solid-state electrolytes, Li 3 x La 2/3– x TiO 3 (LLTO), are considered among the most promising candidates for the development of all-solid-state batteries based on lithium metal. Their high bulk ionic conductivity can be modulated by substituting part of the atoms hosted in the A- or B-site of the LLTO structure. In this work, we investigate the crystal structure and the long-range charge migration processes characterizing a family of perovskites with the general formula La 1/2+1/2 x Li 1/2–1/2 x Ti 1– x Al x O 3 (0 ≤ x ≤ 0.6), in which the charge balance and the nominal A-site vacancies ( n A = 0) are preserved. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) investigations reveal the presence of a very complex nanostructure constituted by a mixture of two different ordered nanoregions of tetragonal P 4/ mmm and rhombohedral R 3̅ c symmetries. Broadband electrical spectroscopy studies confirm the presence of different crystalline domains and demonstrate that the structural fluctuations of the BO 6 octahedra require to be intra- and intercell coupled, to enable the long-range diffusion of the lithium cation, in a similar way to the segmental mode that takes place in polymer-ion conductors. These hypotheses are corroborated by density functional theory (DFT) calculations and molecular dynamic simulations.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.2c00459