Electrodeposition of chitosan/graphene oxide conduit to enhance peripheral nerve regeneration

[INLINE:1] Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects. However, a conduit exhibiting good biocompatibility remains to be developed. In this work, a series of chitosan/graphene oxide (GO) films with concentrations of GO varying f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural regeneration research 2023-01, Vol.18 (1), p.207-212
Hauptverfasser: Zhao, Ya-Nan, Wu, Ping, Zhao, Zi-Yuan, Chen, Fei-Xiang, Xiao, Ao, Yue, Zhi-Yi, Han, Xin-Wei, Zheng, Yong, Chen, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[INLINE:1] Currently available commercial nerve guidance conduits have been applied in the repair of peripheral nerve defects. However, a conduit exhibiting good biocompatibility remains to be developed. In this work, a series of chitosan/graphene oxide (GO) films with concentrations of GO varying from 0-1 wt% (collectively referred to as CHGF-n) were prepared by an electrodeposition technique. The effects of CHGF-n on proliferation and adhesion abilities of Schwann cells were evaluated. The results showed that Schwann cells exhibited elongated spindle shapes and upregulated expression of nerve regeneration-related factors such as Krox20 (a key myelination factor), Zeb2 (essential for Schwann cell differentiation, myelination, and nerve repair), and transforming growth factor β (a cytokine with regenerative functions). In addition, a nerve guidance conduit with a GO content of 0.25% (CHGFC-0.25) was implanted to repair a 10-mm sciatic nerve defect in rats. The results indicated improvements in sciatic functional index, electrophysiology, and sciatic nerve and gastrocnemius muscle histology compared with the CHGFC-0 group, and similar outcomes to the autograft group. In conclusion, we provide a candidate method for the repair of peripheral nerve defects using free-standing chitosan/GO nerve conduits produced by electrodeposition.
ISSN:1673-5374
1876-7958
DOI:10.4103/1673-5374.344836