Tomonaga–Luttinger Spin Liquid and Kosterlitz–Thouless Transition in the Spin-1/2 Branched Chains: The Study of Topological Phase Transition
In the present work, we provide a comprehensive numerical investigation of the magnetic properties and phase spectra of three types of spin-1/2 branched chains consisting of one, two and three side spins per unit block with intra-chain interaction and a uniform inter-chain interaction in the presenc...
Gespeichert in:
Veröffentlicht in: | Materials 2022-06, Vol.15 (12), p.4183 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present work, we provide a comprehensive numerical investigation of the magnetic properties and phase spectra of three types of spin-1/2 branched chains consisting of one, two and three side spins per unit block with intra-chain interaction and a uniform inter-chain interaction in the presence of an external magnetic field. In a specific magnetic field interval, the low-temperature magnetization of these chains shows a step-like behavior with a pronounced plateau depending on the strength and the type of intra-chain interaction being ferromagnetic or antiferromagnetic. We demonstrate that when inter-chain interaction J1 is antiferromagnetic and intra-chain interaction J2 is ferromagnetic, the magnetization of the models manifests a smooth increase without a plateau, which is evidence of the existence of a Luttinger-like spin liquid phase before reaching its saturation value. On the other hand, when J1 is ferromagnetic and J2 is antiferromagnetic, the low-temperature magnetization of the chain with two branches shows an intermediate plateau at one-half of the saturation magnetization that breaks a quantum spin liquid phase into two regions. The magnetization of the chain with three branches exhibits two intermediate plateaus and two regions of a quantum spin liquid. We demonstrate that the chains with more than one side spin illustrate in their ground-state phase diagram a Kosterlitz–Thouless transition from a gapful phase to a gapless spin liquid phase. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma15124183 |