Preparation and Release of pH-Sensitive β-Cyclodextrin Derivative Micelles Loaded with Paclitaxel
In this paper, a new amphiphilic mono-6-β-cyclodextrin octadecylimine (6-β-CD-N-ODMA) copolymer was synthesized based on β-cyclodextrin and octadecylamine, which can self-assemble to form polymeric micelles. Drug-loaded micelles (a new drug carrier) were obtained using 6-β-CD-N-ODMA and paclitaxel (...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-06, Vol.14 (12), p.2482 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new amphiphilic mono-6-β-cyclodextrin octadecylimine (6-β-CD-N-ODMA) copolymer was synthesized based on β-cyclodextrin and octadecylamine, which can self-assemble to form polymeric micelles. Drug-loaded micelles (a new drug carrier) were obtained using 6-β-CD-N-ODMA and paclitaxel (PTX) by the dialysis method. Orthogonal experiments were used to optimize the preparation method of the drug-loaded micelles. The drug-loading content of the carrier prepared by the optimized method was 1.97%. The physicochemical properties of blank micelles and drug-loaded micelles were evaluated by the fluorescence probe method, infrared spectra, dynamic light scattering, and scanning electron microscopy. The release properties of the carrier were investigated. The carrier has good pH sensitivity and the cumulative release rate after 96 h was 88% in PBS (pH = 5.0). The Ritger–Peppas equation is the optimal model for PTX released at pH 5.0, implying that the hydrolysis effect of 6-β-CD-N-ODMA is the main reason for PTX release. The results indicate that the developed carrier can increase the solubility of PTX and possess potential for increased clinical efficacy of PTX. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym14122482 |