Genome-Wide Identification of Binding Sites for SmTCP7a Transcription Factors of Eggplant during Bacterial Wilt Resistance by ChIP-Seq
Teosinte branched 1/cycloidea/proliferating cell factor (TCP) transcription factors play a key role in the regulation of plant biotic and abiotic stresses. In this study, our results show that SmTCP7a positively regulated bacterial wilt that was caused by ChIP-seq was conducted to analyze the transc...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-06, Vol.23 (12), p.6844 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Teosinte branched 1/cycloidea/proliferating cell factor (TCP) transcription factors play a key role in the regulation of plant biotic and abiotic stresses. In this study, our results show that SmTCP7a positively regulated bacterial wilt that was caused by
ChIP-seq was conducted to analyze the transcriptional regulation mechanism of SmTCP7a before (R0 h) and 48 h after infection (R48 h). SmTCP7a regulated a total of 92 and 91 peak-associated genes in R0 h and R48 h, respectively. A KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis showed that phenylpropanoid biosynthesis, MAPK (mitogen-activated protein kinas) signaling pathway, plant hormone signal transduction and plant-pathogen interactions were involved. The difference in peaks between R0 h and R48 h showed that there were three peak-associated genes that were modulated by infection. A better understanding of the potential target genes of SmTCP7a in response to
will provide a comprehensive understanding of the SmTCP7a regulatory mechanism during the eggplant defense response to bacterial wilt. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23126844 |