ANALYSIS OF REGRESSION DISCONTINUITY DESIGNS USING CENSORED DATA
In many medical and scientific settings, the choice of treatment or intervention may be determined by a covariate threshold. For example, elderly men may receive more thorough diagnosis if their prostate-specific antigen (PSA) level is high. In these cases, the causal treatment effect is often of gr...
Gespeichert in:
Veröffentlicht in: | Journal of statistical research - University of Dacca. Institute of Statistical Research and Training 2021-01, Vol.55 (1), p.225-248 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many medical and scientific settings, the choice of treatment or intervention may be determined by a covariate threshold. For example, elderly men may receive more thorough diagnosis if their prostate-specific antigen (PSA) level is high. In these cases, the causal treatment effect is often of great interest, especially when there is a lack of evidence from randomized clinical trials. From the social science literature, a class of methods known as regression discontinuity (RD) designs can be used to estimate the treatment effect in this situation. Under certain assumptions, such an estimand enjoys a causal interpretation. We show how to estimate causal effects under the regression discontinuity design for censored data. The proposed estimation procedure employs a class of censoring unbiased transformations that includes inverse probability censored weighting and doubly robust transformation schemes. Simulation studies are used to evaluate the finite-sample properties of the proposed estimator. We also illustrate the proposed method by evaluating the causal effect of PSA-dependent screening strategies. |
---|---|
ISSN: | 0256-422X |
DOI: | 10.47302/jsr.2021550115 |