Approximating posteriors with high-dimensional nuisance parameters via integrated rotated Gaussian approximation

Summary Posterior computation for high-dimensional data with many parameters can be challenging. This article focuses on a new method for approximating posterior distributions of a low- to moderate-dimensional parameter in the presence of a high-dimensional or otherwise computationally challenging n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2021-06, Vol.108 (2), p.269-282
Hauptverfasser: van den Boom, W, Reeves, G, Dunson, D B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Posterior computation for high-dimensional data with many parameters can be challenging. This article focuses on a new method for approximating posterior distributions of a low- to moderate-dimensional parameter in the presence of a high-dimensional or otherwise computationally challenging nuisance parameter. The focus is on regression models and the key idea is to separate the likelihood into two components through a rotation. One component involves only the nuisance parameters, which can then be integrated out using a novel type of Gaussian approximation. We provide theory on approximation accuracy that holds for a broad class of forms of the nuisance component and priors. Applying our method to simulated and real datasets shows that it can outperform state-of-the-art posterior approximation approaches.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asaa068