Approximating posteriors with high-dimensional nuisance parameters via integrated rotated Gaussian approximation
Summary Posterior computation for high-dimensional data with many parameters can be challenging. This article focuses on a new method for approximating posterior distributions of a low- to moderate-dimensional parameter in the presence of a high-dimensional or otherwise computationally challenging n...
Gespeichert in:
Veröffentlicht in: | Biometrika 2021-06, Vol.108 (2), p.269-282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Posterior computation for high-dimensional data with many parameters can be challenging. This article focuses on a new method for approximating posterior distributions of a low- to moderate-dimensional parameter in the presence of a high-dimensional or otherwise computationally challenging nuisance parameter. The focus is on regression models and the key idea is to separate the likelihood into two components through a rotation. One component involves only the nuisance parameters, which can then be integrated out using a novel type of Gaussian approximation. We provide theory on approximation accuracy that holds for a broad class of forms of the nuisance component and priors. Applying our method to simulated and real datasets shows that it can outperform state-of-the-art posterior approximation approaches. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asaa068 |