Picosecond optospintronic tunnel junctions

Spintronic devices have become promising candidates for next-generation memory architecture. However, state-of-the-art devices, such as perpendicular magnetic tunnel junctions (MTJs), are still fundamentally constrained by a subnanosecond speed limitation, which has remained a long-lasting scientifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-06, Vol.119 (24), p.1
Hauptverfasser: Wang, Luding, Cheng, Houyi, Li, Pingzhi, van Hees, Youri L. W., Liu, Yang, Cao, Kaihua, Lavrijsen, Reinoud, Lin, Xiaoyang, Koopmans, Bert, Zhao, Weisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spintronic devices have become promising candidates for next-generation memory architecture. However, state-of-the-art devices, such as perpendicular magnetic tunnel junctions (MTJs), are still fundamentally constrained by a subnanosecond speed limitation, which has remained a long-lasting scientific obstacle in the ultrafast spintronics field. The highlight of our work is the demonstration of an optospintronic tunnel junction, an all-optical MTJ device which emerges as a new category of integrated photonic–spintronic memory. We demonstrate 1) laser-induced deterministic and efficient writing by an all-optical approach and electrical readout by tunnel magnetoresistance, 2) writing speed within 10 ps, demonstrated by femtosecond-resolved measurements, and 3) integration with state-of-the-art MTJ performance and a complementary metal–oxide–semiconductor-compatible fabrication progress. Perpendicular magnetic tunnel junctions (p-MTJs), as building blocks of spintronic devices, offer substantial potential for next-generation nonvolatile memory applications. However, their performance is fundamentally hindered by a subnanosecond speed limitation, due to spin-polarized-current-based mechanisms. Here, we report an optospintronic tunnel junction (OTJ) device with a picosecond switching speed, ultralow power, high magnetoresistance ratio, high thermal stability, and nonvolatility. This device incorporates an all-optically switchable Gd/Co bilayer coupled to a CoFeB/MgO-based p-MTJ, by subtle tuning of Ruderman–Kittel–Kasuya–Yosida interaction. An all-optical “writing” of the OTJ within 10 ps is experimentally demonstrated by time-resolved measurements. The device shows a reliable resistance “readout” with a relatively high tunnel magnetoresistance of 34.7%, as well as promising scaling toward the nanoscale with ultralow power consumption (
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2204732119