Analysis of Factors of Productivity of Tight Conglomerate Reservoirs Based on Random Forest Algorithm
The tight conglomerate reservoir of Baikouquan formation in the MA 131 well block in the Junggar basin abounds with petroleum reserves, yet the vertical wells in this reservoir have achieved a limited development effect. The tight conglomerate reservoirs have become an important target for explorati...
Gespeichert in:
Veröffentlicht in: | ACS omega 2022-06, Vol.7 (23), p.20390-20404 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The tight conglomerate reservoir of Baikouquan formation in the MA 131 well block in the Junggar basin abounds with petroleum reserves, yet the vertical wells in this reservoir have achieved a limited development effect. The tight conglomerate reservoirs have become an important target for exploration and exploitation. The high-efficiency development scheme of a small well spacing three-dimensional (3D) staggered well pattern has been determined by a series of field tests on well pattern and well spacing development. Multistage fracturing with a horizontal well has been demonstrated as the primary development technology. The horizontal wells in the MA 131 small well spacing demonstration area have achieved significantly different development effects, and the major controlling factors for high and stable production of a single well remain unclear. In this study, we proposed an evaluation model of major productivity controlling factors of the tight conglomerate reservoir to provide a reference for oil recovery based on a random forest (RF) machine-learning algorithm. The productivity factors were investigated from two aspects: petrophysical facies that are capable of indicating the genetic mechanism of geological dessert and engineering dessert parameters forming complex fracture networks. Resultantly, the reservoir in the MA 131 well block can be classified into 12 petrophysical facies according to the sedimentary characteristics and diagenesis analysis. The mercury injection curves of a variety of petrophysical facies can be classified into four reservoir quality types. The RF model was trained on 80% of the data to predict the oil well class using the selected features as primary inputs while the remaining 20% of the data were set to test the model performance. The results indicated that the RF model produced excellent results with only 12 misclassifications across the entire data set of 627 samples that represent |
---|---|
ISSN: | 2470-1343 2470-1343 |
DOI: | 10.1021/acsomega.2c02546 |