Disruption of mitochondrial complex I induces progressive parkinsonism

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson’s disease 1 . Yet, whether this change contributes to Parkinson’s disease pathogenesis is unclear 2 . Here we used intersectional genetics to disrupt the function of MCI in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-11, Vol.599 (7886), p.650-656
Hauptverfasser: González-Rodríguez, Patricia, Zampese, Enrico, Stout, Kristen A., Guzman, Jaime N., Ilijic, Ema, Yang, Ben, Tkatch, Tatiana, Stavarache, Mihaela A., Wokosin, David L., Gao, Lin, Kaplitt, Michael G., López-Barneo, José, Schumacker, Paul T., Surmeier, D. James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson’s disease 1 . Yet, whether this change contributes to Parkinson’s disease pathogenesis is unclear 2 . Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism—which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson’s disease paradigm 3 , 4 . Dysfunction of mitochondrial complex I in mice is sufficient to cause progressive parkinsonism in which the loss of nigral dopamine release critically contributes to motor dysfunction.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-021-04059-0