Metformin Protects the Intestinal Barrier by Activating Goblet Cell Maturation and Epithelial Proliferation in Radiation-Induced Enteropathy
Radiotherapy or accidental exposure to high-dose radiation can cause severe damage to healthy organs. The gastrointestinal (GI) tract is a radiation-sensitive organ of the body. The intestinal barrier is the first line of defense in the GI tract, and consists of mucus secreted by goblet cells and a...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2022-05, Vol.23 (11), p.5929 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radiotherapy or accidental exposure to high-dose radiation can cause severe damage to healthy organs. The gastrointestinal (GI) tract is a radiation-sensitive organ of the body. The intestinal barrier is the first line of defense in the GI tract, and consists of mucus secreted by goblet cells and a monolayer of epithelium. Intestinal stem cells (ISCs) help in barrier maintenance and intestinal function after injury by regulating efficient regeneration of the epithelium. The Wnt/β-catenin pathway plays a critical role in maintaining the intestinal epithelium and regulates ISC self-renewal. Metformin is the most widely used antidiabetic drug in clinical practice, and its anti-inflammatory, antioxidative, and antiapoptotic effects have also been widely studied. In this study, we investigated whether metformin alleviated radiation-induced enteropathy by focusing on its role in protecting the epithelial barrier. We found that metformin alleviated radiation-induced enteropathy, with increased villi length and crypt numbers, and restored the intestinal barrier function in the irradiated intestine. In a radiation-induced enteropathy mouse model, metformin treatment increased tight-junction expression in the epithelium and inhibited bacterial translocation to mesenteric lymph nodes. Metformin increased the number of ISCs from radiation toxicity and enhanced epithelial repair by activating Wnt/β-catenin signaling. These data suggested that metformin may be a potential therapeutic agent for radiation-induced enteropathy. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23115929 |