Multishell Diffusion MR Tractography Yields Morphological and Microstructural Information of the Anterior Optic Pathway: A Proof-of-Concept Study in Patients with Leber's Hereditary Optic Neuropathy

Tractography based on multishell diffusion-weighted magnetic resonance imaging (DWI) can be used to estimate the course of myelinated white matter tracts and nerves, yielding valuable information regarding normal anatomy and variability. DWI is sensitive to the local tissue microstructure, so tracto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2022-06, Vol.19 (11), p.6914
Hauptverfasser: Manners, David Neil, Gramegna, Laura Ludovica, La Morgia, Chiara, Sighinolfi, Giovanni, Fiscone, Cristiana, Carbonelli, Michele, Romagnoli, Martina, Carelli, Valerio, Tonon, Caterina, Lodi, Raffaele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tractography based on multishell diffusion-weighted magnetic resonance imaging (DWI) can be used to estimate the course of myelinated white matter tracts and nerves, yielding valuable information regarding normal anatomy and variability. DWI is sensitive to the local tissue microstructure, so tractography can be used to estimate tissue properties within nerve tracts at a resolution of millimeters. This study aimed to test the applicability of the method using a disease with a well-established pattern of myelinated nerve involvement. Eight patients with LHON and 13 age-matched healthy controls underwent tractography of the anterior optic pathway. Diffusion parameters were compared between groups, and for the patient group correlated with clinical/ophthalmological parameters. Tractography established the course of the anterior optic pathway in both patients and controls. Localized changes in fractional anisotropy were observed, and related to estimates of different tissue compartments within the nerve and tract. The proportion of different compartments correlated with markers of disease severity. The method described allows both anatomical localization and tissue characterization in vivo, permitting both visualization of variation at the individual level and statistical inference at the group level. It provides a valuable adjunct to ex vivo anatomical and histological study of normal variation and disease processes.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph19116914