Small Object Detection Network Based on Feature Information Enhancement

Due to the small size and weak characteristics of small objects, the performance of existing object detection algorithms for small objects is not ideal. In this paper, we propose a small object detection network based on feature information enhancement to improve the detection effect of small object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-06, Vol.2022, p.6394823-12
Hauptverfasser: Luo, Huilan, Wang, Pei, Chen, Hongkun, Kowelo, Vladimir Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the small size and weak characteristics of small objects, the performance of existing object detection algorithms for small objects is not ideal. In this paper, we propose a small object detection network based on feature information enhancement to improve the detection effect of small objects. In our method, two key modules, information enhancement module and dense atrous convolution module, are proposed to enhance the expression and discrimination ability of feature information. The detection accuracy of this method on PASCAL VOC, MS COCO, and UCAS-AOD data sets is 81.3%, 34.8%, and 87.0%, respectively. In addition, the detection results of this paper in detecting small objects are slightly (0.2% and 0.1%) higher than the current advanced algorithms (YOLOv4 and DETR, respectively). Moreover, when these two modules are integrated into other algorithms, such as RFBNet, it can also bring considerable improvement.
ISSN:1687-5265
1687-5273
DOI:10.1155/2022/6394823