Role of dynamic bonds on fatigue threshold of tough hydrogels
SignificanceDynamic bonds have been found to enhance fracture toughness of hydrogels as sacrificial bonds, but the role of dynamic bonds to fatigue threshold of hydrogels is poorly understood because the wide dynamic range of viscoelastic response imposes a challenge on fatigue experiments. Here, by...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-05, Vol.119 (20), p.e2200678119-e2200678119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SignificanceDynamic bonds have been found to enhance fracture toughness of hydrogels as sacrificial bonds, but the role of dynamic bonds to fatigue threshold of hydrogels is poorly understood because the wide dynamic range of viscoelastic response imposes a challenge on fatigue experiments. Here, by using polyampholyte hydrogels, we adopted a time-salt superposition principle to access a wide range of time scales that are otherwise difficult to access in fatigue tests. Relations between fatigue threshold and strain rate in elastic and viscoelastic regimes and the corresponding mechanism correlated to permanent/dynamic bonds were revealed. We believe that this work gives important insight into the design and development of fatigue-resistant soft materials composed of dynamic bonds. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2200678119 |