Porcupine Inhibition Disrupts Mitochondrial Function and Homeostasis in WNT Ligand-Addicted Pancreatic Cancer
WNT signaling promotes pancreatic ductal adenocarcinoma (PDAC) through diverse effects on proliferation, differentiation, survival, and stemness. A subset of PDAC with inactivating mutations in ring finger protein 43 (RNF43) show growth dependency on autocrine WNT ligand signaling and are susceptibl...
Gespeichert in:
Veröffentlicht in: | Molecular cancer therapeutics 2022-06, Vol.21 (6), p.936-947 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | WNT signaling promotes pancreatic ductal adenocarcinoma (PDAC) through diverse effects on proliferation, differentiation, survival, and stemness. A subset of PDAC with inactivating mutations in ring finger protein 43 (RNF43) show growth dependency on autocrine WNT ligand signaling and are susceptible to agents that block WNT ligand acylation by Porcupine O-acyltransferase, which is required for proper WNT ligand processing and secretion. For this study, global transcriptomic, proteomic, and metabolomic analyses were performed to explore the therapeutic response of RNF43-mutant PDAC to the Porcupine inhibitor (PORCNi) LGK974. LGK974 disrupted cellular bioenergetics and mitochondrial function through actions that included rapid mitochondrial depolarization, reduced mitochondrial content, and inhibition of oxidative phosphorylation and tricarboxylic acid cycle. LGK974 also broadly altered transcriptional activity, downregulating genes involved in cell cycle, nucleotide metabolism, and ribosomal biogenesis and upregulating genes involved in epithelial-mesenchymal transition, hypoxia, endocytosis, and lysosomes. Autophagy and lysosomal activity were augmented in response to LGK974, which synergistically inhibited tumor cell viability in combination with chloroquine. Autocrine WNT ligand signaling dictates metabolic dependencies in RNF43-mutant PDAC through a combination of transcription dependent and independent effects linked to mitochondrial health and function. Metabolic adaptations to mitochondrial damage and bioenergetic stress represent potential targetable liabilities in combination with PORCNi for the treatment of WNT ligand-addicted PDAC. |
---|---|
ISSN: | 1535-7163 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-21-0623 |