Ultrafast timing enables reconstruction-free positron emission imaging

X-ray and gamma-ray photons are widely used for imaging but require a mathematical reconstruction step, known as tomography, to produce cross-sectional images from the measured data. Theoretically, the back-to-back annihilation photons produced by positron–electron annihilation can be directly local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2021-12, Vol.15 (12), p.914-918
Hauptverfasser: Kwon, Sun Il, Ota, Ryosuke, Berg, Eric, Hashimoto, Fumio, Nakajima, Kyohei, Ogawa, Izumi, Tamagawa, Yoichi, Omura, Tomohide, Hasegawa, Tomoyuki, Cherry, Simon R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-ray and gamma-ray photons are widely used for imaging but require a mathematical reconstruction step, known as tomography, to produce cross-sectional images from the measured data. Theoretically, the back-to-back annihilation photons produced by positron–electron annihilation can be directly localized in three-dimensional space using time-of-flight information without tomographic reconstruction; however, this has not yet been demonstrated due to the insufficient timing performance of available radiation detectors. Here we develop techniques based on detecting prompt Cherenkov photons, which, when combined with a convolutional neural network for timing estimation, resulted in an average timing precision of 32 ps, corresponding to a spatial precision of 4.8 mm. We show this is sufficient to produce cross-sectional images of a positron-emitting radionuclide directly from the detected coincident annihilation photons, without using any tomographic reconstruction algorithm. The reconstruction-free imaging demonstrated here directly localizes positron emission and frees the design of an imaging system from the geometric and sampling constraints that are normally present for tomographic reconstruction. Positron emission imaging without tomographic reconstruction is demonstrated. A Cherenkov radiation detector detects gamma rays produced by positron–electron annihilation. The position of a positron source is determined with a precision of 4.8 mm.
ISSN:1749-4885
1749-4893
DOI:10.1038/s41566-021-00871-2