Antioxidant activity and α-glucosidase inhibitability of Distichochlamys citrea M.F. Newman rhizome fractionated extracts: in vitro and in silico screenings

Distichochlamys citrea M.F. Newman (commonly known as “Black Ginger”) is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2022-09, Vol.76 (9), p.5655-5675
Hauptverfasser: Van Chen, Tran, Cuong, To Dao, Quy, Phan Tu, Bui, Thanh Q., Van Tuan, Le, Van Hue, Nguyen, Triet, Nguyen Thanh, Ho, Duc Viet, Bao, Nguyen Chi, Nhung, Nguyen Thi Ai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distichochlamys citrea M.F. Newman (commonly known as “Black Ginger”) is an endemic plant to Vietnam and has been extensively exploited by folk medication for treatments of infection-related diseases and diabetes. In this work, its rhizomes were subjected to fractionated extraction, phytochemical examination, evaluation of antioxidant effect by DDPH free radical neutralization, and inhibitory activity toward α -glucosidase. The compositional components were subjected to in silico screening, including density functional theory calculation, molecular docking simulation, physicochemical analysis, and pharmacokinetic regression. In the trials, EtOAc fraction is found as the bioactive part of most effectiveness, regarding both antioxidant effect (IC 50  = 90.27 µg mL −1 ) and α -glucosidase inhibitory activity (IC 50  = 115.75 μg mL −1 ). Chemical determination reveals there are 13 components of its composition. DFT-based calculations find no abnormal constraints in their structures. Docking-based simulation provides order of inhibitory effectiveness: 3-P53341  >  12-P53341  >  7-P53341  >  4-P53341  >  11-P53341  >  10-P53341 . QSARIS-based investigations implicate their biocompatibility. ADMET-based regressions indicate that all candidates are generally safe for medicinal applications. The findings would contribute to the basis for further studies on the chemical compositions of Distichochlamys citrea and their biological activities.
ISSN:0366-6352
1336-9075
2585-7290
DOI:10.1007/s11696-022-02273-2