Prognostic Prediction Using the Clinical Data and Ultrasomics-Based Model in Acute Respiratory Distress Syndrome (ARDS) Combined with Acute Kidney Injury (AKI)
Objective. A model was constructed based on clinical and ultrasomics features to predict the prognosis of patients in the respiratory intensive unit (RICU) who had acute respiratory distress syndrome (ARDS) combined with acute kidney injury (AKI). AKI ensues after ARDS in RICU ordinarily. The progno...
Gespeichert in:
Veröffentlicht in: | International journal of clinical practice (Esher) 2022-05, Vol.2022, p.4822337-8 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective. A model was constructed based on clinical and ultrasomics features to predict the prognosis of patients in the respiratory intensive unit (RICU) who had acute respiratory distress syndrome (ARDS) combined with acute kidney injury (AKI). AKI ensues after ARDS in RICU ordinarily. The prognostic prediction tool was further developed on this basis. Methods. We collected clinical and ultrasonic data from 145 patients who had ARDS combined with AKI and received continuous renal replacement therapy (CRRT) in the RICU of Xiangyang Hospital of Traditional Chinese Medicine from March 2016 to November 2019. The patients were divided into the survival group (n = 51) and the death group (n = 94), depending on the treatment outcome. The training set (n = 102) and the testing set (n = 43) were established based on patient data. The clinical and ultrasomics features and the CRRT parameters were compared between the two groups. The influence factors of death were analyzed by logistic regression, and four predictive models were established. The predictive performance of 4 models was compared using the R Software 4.1.3. The decision curve analysis graphs were drawn using the R language to determine the net benefit of each. Result. Univariate analysis was conducted in the training set. The following risk factors for poor prognosis were identified: age, concurrent cancers, sequential organ failure assessment score (SOFA), number of organ dysfunctions, positive cumulative fluid balance at 72 h, time from ICU admission to CRRT, mean arterial pressure, oxygenation index, and gray-level size zone matrix, GLSZM (SumEntropy.239/SmallDependenceHighGrayLevelEmphasis.314/Maximum.327/Variance.338) (P |
---|---|
ISSN: | 1368-5031 1742-1241 |
DOI: | 10.1155/2022/4822337 |