Polarization Independent Metamaterial Absorber with Anti-Reflection Coating Nanoarchitectonics for Visible and Infrared Window Applications

The visible and infrared wavelengths are the most frequently used electromagnetic (EM) waves in the frequency spectrum; able to penetrate the atmosphere and reach Earth's surface. These wavelengths have attracted much attention in solar energy harvesting; thermography; and infrared imaging appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-05, Vol.15 (10), p.3733
Hauptverfasser: Musa, Ahmad, Hakim, Mohammad Lutful, Alam, Touhidul, Islam, Mohammad Tariqul, Alshammari, Ahmed S, Mat, Kamarulzaman, M, M Salaheldeen, Almalki, Sami H A, Islam, Md Shabiul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The visible and infrared wavelengths are the most frequently used electromagnetic (EM) waves in the frequency spectrum; able to penetrate the atmosphere and reach Earth's surface. These wavelengths have attracted much attention in solar energy harvesting; thermography; and infrared imaging applications for the detection of electrical failures; faults; or thermal leakage hot spots and inspection of tapped live energized components. This paper presents a numerical analysis of a compact cubic cross-shaped four-layer metamaterial absorber (MA) structure by using a simple metal-dielectric-metal-dielectric configuration for wideband visible and infrared applications. The proposed MA achieved above 80% absorption in both visible and near-infrared regions of the spectrum from 350 to 1250 nm wavelength with an overall unit cell size of 0.57λ × 0.57λ × 0.59λ. The SiO based anti-reflection coating of sandwiched tungsten facilitates to achieve the wide high absorption bandwidth. The perceptible novelty of the proposed metamaterial is to achieve an average absorptivity of 95.3% for both visible and infrared wavelengths with a maximum absorptivity of 98% from 400 nm to 900 nm. Furthermore, the proposed structure provides polarization insensitivity with a higher oblique incidence angle tolerance up to 45°.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma15103733