Nephrotoxicity of perfluorooctane sulfonate (PFOS)—effect on transcription and epigenetic factors
Abstract Perfluorooctane sulfonate (PFOS) is a widespread persistent environmental pollutant implicated in nephrotoxicity with altered metabolism, carcinogenesis, and fibrosis potential. We studied the underlying epigenetic mechanism involving transcription factors of PFOS-induced kidney injury. A 1...
Gespeichert in:
Veröffentlicht in: | Environmental epigenetics 2022, Vol.8 (1), p.dvac010 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Perfluorooctane sulfonate (PFOS) is a widespread persistent environmental pollutant implicated in nephrotoxicity with altered metabolism, carcinogenesis, and fibrosis potential. We studied the underlying epigenetic mechanism involving transcription factors of PFOS-induced kidney injury. A 14-day orally dosed mouse model was chosen to study acute influences in vivo. Messenger RNA expression analysis and gene set enrichment analysis were performed to elucidate the relationship between epigenetic regulators, transcription factors, kidney disease, and metabolism homeostasis. PFOS was found to accumulate in mouse kidney in a dose-dependent manner. Kidney injury markers Acta2 and Bcl2l1 increased in expression significantly. Transcription factors, including Nef2l2, Hes1, Ppara, and Ppard, were upregulated, while Smarca2 and Pparg were downregulated. Furthermore, global DNA methylation levels decreased and the gene expression of histone demethylases Kdm1a and Kdm4c were upregulated. Our work implicates PFOS-induced gene expression alterations in epigenetics, transcription factors, and kidney biomarkers with potential implications for kidney fibrosis and kidney carcinogenesis. Future experiments can focus on epigenetic mechanisms to establish a panel of PFOS-induced biomarkers for nephrotoxicity evaluation. |
---|---|
ISSN: | 2058-5888 2058-5888 |
DOI: | 10.1093/eep/dvac010 |