Hydrogen Proton Magnetic Resonance Spectroscopy (MRS) in Differential Diagnosis of Intracranial Tumors: A Systematic Review
Meningioma, glioma, and metastases are the most common intracranial tumors in clinical practice. In order to improve the prognosis of patients, timely diagnosis and early treatment are crucial. Hydrogen proton magnetic resonance spectroscopy (1H-MRS) imaging can noninvasively display the biochemical...
Gespeichert in:
Veröffentlicht in: | Contrast media and molecular imaging 2022, Vol.2022 (1), p.7242192-7242192 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Meningioma, glioma, and metastases are the most common intracranial tumors in clinical practice. In order to improve the prognosis of patients, timely diagnosis and early treatment are crucial. Hydrogen proton magnetic resonance spectroscopy (1H-MRS) imaging can noninvasively display the biochemical information of tissues in vivo and has been applied to identify and diagnose intracranial tumors. We want to comprehensively evaluate 1H-MRS identify and diagnose intracranial tumors by meta-analysis. Some databases such as PubMed and Cochrane Library were used to systematically search articles that were about identifying and diagnosing intracranial tumors with 1H-MRS. Then, weighted mean difference (WMD) was used as an effect size to conduct meta-analysis. There are altogether nine articles, including 533 patients. Results of meta-analysis: The Cho/Cr and Cho/NAA ratios in the LGG group were significantly lower than those in the HGG group (WMD = −0.69, 95% CI (−0.92, −0.45), P |
---|---|
ISSN: | 1555-4309 1555-4317 |
DOI: | 10.1155/2022/7242192 |