Ubiquitous mRNA decay fragments in E. coli redefine the functional transcriptome

Bacterial mRNAs have short life cycles, in which transcription is rapidly followed by translation and degradation within seconds to minutes. The resulting diversity of mRNA molecules across different life-cycle stages impacts their functionality but has remained unresolved. Here we quantitatively ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2022-05, Vol.50 (9), p.5029-5046
Hauptverfasser: Herzel, Lydia, Stanley, Julian A, Yao, Chun-Chen, Li, Gene-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial mRNAs have short life cycles, in which transcription is rapidly followed by translation and degradation within seconds to minutes. The resulting diversity of mRNA molecules across different life-cycle stages impacts their functionality but has remained unresolved. Here we quantitatively map the 3' status of cellular RNAs in Escherichia coli during steady-state growth and report a large fraction of molecules (median>60%) that are fragments of canonical full-length mRNAs. The majority of RNA fragments are decay intermediates, whereas nascent RNAs contribute to a smaller fraction. Despite the prevalence of decay intermediates in total cellular RNA, these intermediates are underrepresented in the pool of ribosome-associated transcripts and can thus distort quantifications and differential expression analyses for the abundance of full-length, functional mRNAs. The large heterogeneity within mRNA molecules in vivo highlights the importance in discerning functional transcripts and provides a lens for studying the dynamic life cycle of mRNAs.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkac295