Three Orphan Histidine Kinases Inhibit Clostridioides difficile Sporulation

The ability of the anaerobic gastrointestinal pathogen Clostridioides difficile to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bacteriology 2022-05, Vol.204 (5), p.e0010622-e0010622
Hauptverfasser: Edwards, Adrianne N, Wetzel, Daniela, DiCandia, Michael A, McBride, Shonna M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of the anaerobic gastrointestinal pathogen Clostridioides difficile to survive outside the host relies on the formation of dormant endospores. Spore formation is contingent on the activation of a conserved transcription factor, Spo0A, by phosphorylation. Multiple kinases and phosphatases regulate Spo0A activity in other spore-forming organisms; however, these factors are not well conserved in C. difficile. Previously, we discovered that deletion of a predicted histidine kinase, CD1492, increases sporulation, indicating that CD1492 inhibits C. difficile spore formation. In this study, we investigate the functions of additional predicted orphan histidine kinases CD2492, CD1579, and CD1949, which are hypothesized to regulate Spo0A phosphorylation. Disruption of CD2492 also increased sporulation frequency, similarly to the mutant and in contrast to a previous study. A mutant phenocopied the sporulation and gene expression patterns of the single mutants, suggesting that these proteins function in the same genetic pathway to repress sporulation. Deletion of CD1579 variably increased sporulation frequency; however, knockdown of expression did not influence sporulation. We provide evidence that CD1492, CD2492, and CD1579 function as phosphatases, as mutation of the conserved histidine residue for phosphate transfer abolished CD2492 function, and expression of the or histidine site-directed mutants or the wild-type allele in a parent strain resulted in a dominant-negative hypersporulation phenotype. Altogether, at least three predicted histidine kinases, CD1492, CD2492, and CD1579 (herein, PtpA, PtpB and PtpC), repress C. difficile sporulation initiation by regulating activity of Spo0A. The formation of inactive spores is critical for the long-term survival of the gastrointestinal pathogen Clostridioides difficile. The onset of sporulation is controlled by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple kinases and phosphatases control Spo0A phosphorylation; however, this regulatory pathway is not defined in C. difficile. We show that two predicted histidine kinase proteins, CD1492 (PtpA) and CD2492 (PtpB), function in the same regulatory pathway to repress sporulation by preventing Spo0A phosphorylation. We show that another predicted histidine kinase protein, CD1579 (PtpC), also represses sporulation and present evidence that a fourth predicted histidine kinase protein, CD1949, does not impact sporulation. T
ISSN:0021-9193
1098-5530
DOI:10.1128/jb.00106-22