Survey of Supervised Learning for Medical Image Processing

Medical image interpretation is an essential task for the correct diagnosis of many diseases. Pathologists, radiologists, physicians, and researchers rely heavily on medical images to perform diagnoses and develop new treatments. However, manual medical image analysis is tedious and time consuming,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2022-01, Vol.3 (4), p.292, Article 292
Hauptverfasser: Aljuaid, Abeer, Anwar, Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical image interpretation is an essential task for the correct diagnosis of many diseases. Pathologists, radiologists, physicians, and researchers rely heavily on medical images to perform diagnoses and develop new treatments. However, manual medical image analysis is tedious and time consuming, making it necessary to identify accurate automated methods. Deep learning—especially supervised deep learning—shows impressive performance in the classification, detection, and segmentation of medical images and has proven comparable in ability to humans. This survey aims to help researchers and practitioners of medical image analysis understand the key concepts and algorithms of supervised learning techniques. Specifically, this survey explains the performance metrics of supervised learning methods; summarizes the available medical datasets; studies the state-of-the-art supervised learning architectures for medical imaging processing, including convolutional neural networks (CNNs) and their corresponding algorithms, region-based CNNs and their variants, fully convolutional networks (FCN) and U-Net architecture; and discusses the trends and challenges in the application of supervised learning methods to medical image analysis. Supervised learning requires large labeled datasets to learn and achieve good performance, and data augmentation, transfer learning, and dropout techniques have widely been employed in medical image processing to overcome the lack of such datasets.
ISSN:2661-8907
2662-995X
2661-8907
DOI:10.1007/s42979-022-01166-1