A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach
This paper addresses a multi-objective blood supply chain network design, considering economic and environmental aspects. The objective of this model is to simultaneously minimize a blood supply chain operational cost and its logistical carbon footprint. In order to embed the uncertainty of transpor...
Gespeichert in:
Veröffentlicht in: | Operational research 2022-11, Vol.22 (5), p.4685-4723 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses a multi-objective blood supply chain network design, considering economic and environmental aspects. The objective of this model is to simultaneously minimize a blood supply chain operational cost and its logistical carbon footprint. In order to embed the uncertainty of transportation costs, blood demand, capacity of facilities and carbon emission, a novel robust possibilistic-necessity optimization used regarding a hybrid optimistic-pessimistic form. For solving our bi-objective model, three multi-objective decision making approaches including LP-metric, Goal-Programming and Torabi- Hassini methods are examined. These approaches are assessed and ranked with respect to several attributes using a statistical test and TOPSIS method. Our proposed model can accommodate a wide range of decision-makers’ viewpoints with the normalized objective weights, both at the operational or strategic level. The trade-offs between the cost and carbon emission for each method has been depicted in our analyses and a Pareto frontier is determined, using a real case study data of 21 cities in the North-West of Iran considering a 12-month implementation time window. |
---|---|
ISSN: | 1109-2858 1866-1505 |
DOI: | 10.1007/s12351-022-00710-4 |