Critical Step Length as an Indicator of Surface Supersaturation during Crystal Growth from Solution
The surface processes that control crystal growth from solution can be probed in real-time by in situ microscopy. However, when mass transport (partly) limits growth, the interfacial solution conditions are difficult to determine, precluding quantitative measurement. Here, we demonstrate the use of...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2022-02, Vol.22 (2), p.982-986 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The surface processes that control crystal growth from solution can be probed in real-time by in situ microscopy. However, when mass transport (partly) limits growth, the interfacial solution conditions are difficult to determine, precluding quantitative measurement. Here, we demonstrate the use of a thermodynamic feature of crystal surfacesthe critical step lengthto convey the local supersaturation, allowing the surface-controlled kinetics to be obtained. Applying this method to atomic force microscopy measurements of calcite, which are shown to fall within the regime of mixed surface/transport control, unites calcite step velocities with the Kossel–Stranski model, resolves disparities between growth rates measured under different mass transport conditions, and reveals why the Gibbs–Thomson effect in calcite departs from classical theory. Our approach expands the scope of in situ microscopy by decoupling quantitative measurement from the influence of mass transport. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/acs.cgd.1c01249 |