Theory-guided experimental design in battery materials research

A reliable energy storage ecosystem is imperative for a renewable energy future, and continued research is needed to develop promising rechargeable battery chemistries. To this end, better theoretical and experimental understanding of electrochemical mechanisms and structure-property relationships w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-05, Vol.8 (19), p.eabm2422-eabm2422
Hauptverfasser: Eng, Alex Yong Sheng, Soni, Chhail Bihari, Lum, Yanwei, Khoo, Edwin, Yao, Zhenpeng, Vineeth, S K, Kumar, Vipin, Lu, Jun, Johnson, Christopher S, Wolverton, Christopher, Seh, Zhi Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A reliable energy storage ecosystem is imperative for a renewable energy future, and continued research is needed to develop promising rechargeable battery chemistries. To this end, better theoretical and experimental understanding of electrochemical mechanisms and structure-property relationships will allow us to accelerate the development of safer batteries with higher energy densities and longer lifetimes. This Review discusses the interplay between theory and experiment in battery materials research, enabling us to not only uncover hitherto unknown mechanisms but also rationally design more promising electrode and electrolyte materials. We examine specific case studies of theory-guided experimental design in lithium-ion, lithium-metal, sodium-metal, and all-solid-state batteries. We also offer insights into how this framework can be extended to multivalent batteries. To close the loop, we outline recent efforts in coupling machine learning with high-throughput computations and experiments. Last, recommendations for effective collaboration between theorists and experimentalists are provided.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abm2422