Magnetoelectric dissociation of Alzheimer's β-amyloid aggregates

The abnormal self-assembly of β-amyloid (Aβ) peptides and their deposition in the brain is a major pathological feature of Alzheimer's disease (AD), the most prevalent chronic neurodegenerative disease affecting nearly 50 million people worldwide. Here, we report a newly discovered function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-05, Vol.8 (19), p.eabn1675-eabn1675
Hauptverfasser: Jang, Jinhyeong, Park, Chan Beum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The abnormal self-assembly of β-amyloid (Aβ) peptides and their deposition in the brain is a major pathological feature of Alzheimer's disease (AD), the most prevalent chronic neurodegenerative disease affecting nearly 50 million people worldwide. Here, we report a newly discovered function of magnetoelectric nanomaterials for the dissociation of highly stable Aβ aggregates under low-frequency magnetic field. We synthesized magnetoelectric BiFeO -coated CoFe O (BCFO) nanoparticles, which emit excited charge carriers in response to low-frequency magnetic field without generating heat. We demonstrated that the magnetoelectric coupling effect of BCFO nanoparticles successfully dissociates Aβ aggregates via water and dissolved oxygen molecules. Our cytotoxicity evaluation confirmed the alleviating effect of magnetoelectrically excited BCFO nanoparticles on Aβ-associated toxicity. We found high efficacy of BCFO nanoparticles for the clearance of microsized Aβ plaques in ex vivo brain tissues of an AD mouse model. This study shows the potential of magnetoelectric materials for future AD treatment using magnetic field.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abn1675