SUN2 Modulates the Propagation of HSV-1
Herpesviruses assemble new viral particles in the nucleus. These nucleocapsids bud through the inner nuclear membrane to produce enveloped viral particles in the perinuclear space before fusing with the outer nuclear membrane to reach the cytoplasm. This unusual route is necessary since viral capsid...
Gespeichert in:
Veröffentlicht in: | Journal of virology 2022-05, Vol.96 (9), p.e0045322-e0045322 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herpesviruses assemble new viral particles in the nucleus. These nucleocapsids bud through the inner nuclear membrane to produce enveloped viral particles in the perinuclear space before fusing with the outer nuclear membrane to reach the cytoplasm. This unusual route is necessary since viral capsids are too large to pass through nuclear pores. However, the transient perinuclear nucleocapsids (250 nm in diameter) are also larger than the width of the perinuclear space (30 to 50 nm). Interestingly, linker of the nucleoskeleton and cytoskeleton (LINC) components SUN and KASH connect the inner and outer nuclear membranes and regulate their spacing. Previous work by others on the related pseudorabies virus and human cytomegalovirus showed that they functionally interact with SUN proteins. To clarify the role of SUN proteins, we explored their impact on herpes simplex virus 1 (HSV-1), another herpesvirus. Using dominant negative SUN mutants and RNA interference, we show that HSV-1 propagation is dependent on the LINC complex. In contrast to pseudorabies virus, SUN2 disruption by either approach led to increased HSV-1 extracellular viral yields. This SUN2 dependency may be linked to its greater impact on perinuclear spacing in infected cells compared to SUN1. Finally, the virus itself seems to modulate perinuclear spacing.
The large size of herpesviruses prevents them from travelling across the nuclear pores, and they instead egress across the two nuclear membranes, generating short-lived enveloped perinuclear virions. This poses a challenge as the perinuclear space is smaller than the virions. This implies the separation (unzipping) of the two nuclear membranes to accommodate the viral particles. The LINC complex bridges the two nuclear membranes and is an important regulator of perinuclear spacing. Work by others hint at its functional implication during pseudorabies virus and cytomegalovirus propagation. The present study probes the importance for HSV-1 of the SUN proteins, the LINC components found in the inner nuclear membrane. Using dominant negative constructs and RNA interference (RNAi), the data reveal that SUN2 exhibits antiviral propriety toward HSV-1, as disrupting the protein leads to increased viral yields. This is in contrast with that reported for pseudorabies and suggests that differences among herpesviruses may, once again, prevail. |
---|---|
ISSN: | 0022-538X 1098-5514 |
DOI: | 10.1128/jvi.00453-22 |