RAS-Driven Macropinocytosis of Albumin or Dextran Reveals Mutation-Specific Target Engagement of RAS p.G12C Inhibitor ARS-1620 by NIR-Fluorescence Imaging
Purpose Macropinocytosis serves as a highly conserved endocytotic process that has recently been shown as a critical mechanism by which RAS-transformed cells transport extracellular protein into intracellular amino acid pathways to support their unique metabolic needs. We developed NIR fluorescently...
Gespeichert in:
Veröffentlicht in: | Molecular imaging and biology 2022-06, Vol.24 (3), p.498-509 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Macropinocytosis serves as a highly conserved endocytotic process that has recently been shown as a critical mechanism by which RAS-transformed cells transport extracellular protein into intracellular amino acid pathways to support their unique metabolic needs. We developed NIR fluorescently labeled molecular imaging probes to monitor macropinocytosis-mediated uptake of albumin in a K-RAS-dependent manner.
Procedures
Using western blot analysis, immunofluorescence, and flow cytometry, albumin retention was characterized
in vitro
across several RAS-activated lung and pancreatic cancer cell lines. AF790-albumin was synthesized and administered to mice bearing K-RAS mutant xenograft tumors of H460 (K-RAS p.Q61H) and H358 (K-RAS p.G12C) non-small cell lung cancers on each flank. Mice were treated daily with 2 mg/kg of ARS-1620, a targeted RAS p.G12C inhibitor, for 2 days and imaged following each treatment. Subsequently, the mice were then treated daily with 10 mg/kg of amiloride, a general inhibitor of macropinocytosis, for 2 days and imaged. Intratumoral distribution of AF790-albumin was assessed
in vivo
using near-infrared (NIR) fluorescence imaging.
Results
Albumin retention was observed as a function of K-RAS activity and macropinocytosis across several lung and pancreatic cancer cell lines. We documented that ARS-1620-induced inhibition of K-RAS activity or amiloride-mediated inhibition of macropinocytosis significantly reduced albumin uptake. Tumor retention
in vivo
of AF790-albumin was both RAS inhibition-dependent as well as abrogated by inhibition of macropinocytosis.
Conclusions
These data provide a novel approach using NIR-labeled human serum albumin to identify and monitor RAS-driven tumors as well as evaluate the on-target efficacy
in vivo
of inhibitors, such as ARS-1620. |
---|---|
ISSN: | 1536-1632 1860-2002 |
DOI: | 10.1007/s11307-021-01689-8 |