T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration

T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2022-05, Vol.19 (190), p.20220081-20220081
Hauptverfasser: Cavanagh, Henry, Kempe, Daryan, Mazalo, Jessica K, Biro, Maté, Endres, Robert G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20220081
container_issue 190
container_start_page 20220081
container_title Journal of the Royal Society interface
container_volume 19
creator Cavanagh, Henry
Kempe, Daryan
Mazalo, Jessica K
Biro, Maté
Endres, Robert G
description T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.
doi_str_mv 10.1098/rsif.2022.0081
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9090490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2662546232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3801-e77fd93795aeb2dca9a7084e52e2a3ed755fc8885862c8b7a4c87e6b54ba8c563</originalsourceid><addsrcrecordid>eNpVUU1PwzAMjRCIjcGVI8qRS0uaNE16QUITX9IkLkMcozR116C2Kck2af-elo0JLrZlPz9b7yF0nZA4Ibm888FWMSWUxoTI5ARNE5HSiGcZPf1TT9BFCJ-EMME4P0eTITKRCj5FH0tsoGlw63xfu3LX6daagD1sQTe4B29daQ0Ote4Bu2Bs0-i1dV3AtsPr2gNEpW2hC0NvWGjtyv_ML9FZpZsAV4c8Q-9Pj8v5S7R4e36dPywiwyRJIhCiKnMmcq6hoKXRuRZEpsApUM2gFJxXRkrJZUaNLIROjRSQFTwttDQ8YzN0v-ftN0ULpYFu7XWjem9b7XfKaav-Tzpbq5XbqpzkJM3JQHB7IPDuawNhrVobRkl0B24TFB3k42lGGR2g8R5qvAvBQ3U8kxA1uqFGN9TohhrdGBZu_j53hP_Kz74BPQyJOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2662546232</pqid></control><display><type>article</type><title>T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration</title><source>PubMed Central</source><creator>Cavanagh, Henry ; Kempe, Daryan ; Mazalo, Jessica K ; Biro, Maté ; Endres, Robert G</creator><creatorcontrib>Cavanagh, Henry ; Kempe, Daryan ; Mazalo, Jessica K ; Biro, Maté ; Endres, Robert G</creatorcontrib><description>T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2022.0081</identifier><identifier>PMID: 35537475</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Life Sciences–Physics interface</subject><ispartof>Journal of the Royal Society interface, 2022-05, Vol.19 (190), p.20220081-20220081</ispartof><rights>2022 The Authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3801-e77fd93795aeb2dca9a7084e52e2a3ed755fc8885862c8b7a4c87e6b54ba8c563</citedby><cites>FETCH-LOGICAL-c3801-e77fd93795aeb2dca9a7084e52e2a3ed755fc8885862c8b7a4c87e6b54ba8c563</cites><orcidid>0000-0001-5852-3726 ; 0000-0003-1379-659X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35537475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cavanagh, Henry</creatorcontrib><creatorcontrib>Kempe, Daryan</creatorcontrib><creatorcontrib>Mazalo, Jessica K</creatorcontrib><creatorcontrib>Biro, Maté</creatorcontrib><creatorcontrib>Endres, Robert G</creatorcontrib><title>T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.</description><subject>Life Sciences–Physics interface</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUU1PwzAMjRCIjcGVI8qRS0uaNE16QUITX9IkLkMcozR116C2Kck2af-elo0JLrZlPz9b7yF0nZA4Ibm888FWMSWUxoTI5ARNE5HSiGcZPf1TT9BFCJ-EMME4P0eTITKRCj5FH0tsoGlw63xfu3LX6daagD1sQTe4B29daQ0Ote4Bu2Bs0-i1dV3AtsPr2gNEpW2hC0NvWGjtyv_ML9FZpZsAV4c8Q-9Pj8v5S7R4e36dPywiwyRJIhCiKnMmcq6hoKXRuRZEpsApUM2gFJxXRkrJZUaNLIROjRSQFTwttDQ8YzN0v-ftN0ULpYFu7XWjem9b7XfKaav-Tzpbq5XbqpzkJM3JQHB7IPDuawNhrVobRkl0B24TFB3k42lGGR2g8R5qvAvBQ3U8kxA1uqFGN9TohhrdGBZu_j53hP_Kz74BPQyJOg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cavanagh, Henry</creator><creator>Kempe, Daryan</creator><creator>Mazalo, Jessica K</creator><creator>Biro, Maté</creator><creator>Endres, Robert G</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5852-3726</orcidid><orcidid>https://orcid.org/0000-0003-1379-659X</orcidid></search><sort><creationdate>202205</creationdate><title>T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration</title><author>Cavanagh, Henry ; Kempe, Daryan ; Mazalo, Jessica K ; Biro, Maté ; Endres, Robert G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3801-e77fd93795aeb2dca9a7084e52e2a3ed755fc8885862c8b7a4c87e6b54ba8c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Life Sciences–Physics interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavanagh, Henry</creatorcontrib><creatorcontrib>Kempe, Daryan</creatorcontrib><creatorcontrib>Mazalo, Jessica K</creatorcontrib><creatorcontrib>Biro, Maté</creatorcontrib><creatorcontrib>Endres, Robert G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavanagh, Henry</au><au>Kempe, Daryan</au><au>Mazalo, Jessica K</au><au>Biro, Maté</au><au>Endres, Robert G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2022-05</date><risdate>2022</risdate><volume>19</volume><issue>190</issue><spage>20220081</spage><epage>20220081</epage><pages>20220081-20220081</pages><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>35537475</pmid><doi>10.1098/rsif.2022.0081</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5852-3726</orcidid><orcidid>https://orcid.org/0000-0003-1379-659X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5662
ispartof Journal of the Royal Society interface, 2022-05, Vol.19 (190), p.20220081-20220081
issn 1742-5662
1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9090490
source PubMed Central
subjects Life Sciences–Physics interface
title T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=T%20cell%20morphodynamics%20reveal%20periodic%20shape%20oscillations%20in%20three-dimensional%20migration&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Cavanagh,%20Henry&rft.date=2022-05&rft.volume=19&rft.issue=190&rft.spage=20220081&rft.epage=20220081&rft.pages=20220081-20220081&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2022.0081&rft_dat=%3Cproquest_pubme%3E2662546232%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2662546232&rft_id=info:pmid/35537475&rfr_iscdi=true