T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration

T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2022-05, Vol.19 (190), p.20220081-20220081
Hauptverfasser: Cavanagh, Henry, Kempe, Daryan, Mazalo, Jessica K, Biro, Maté, Endres, Robert G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:T cells use sophisticated shape dynamics (morphodynamics) to migrate towards and neutralize infected and cancerous cells. However, there is limited quantitative understanding of the migration process in three-dimensional extracellular matrices (ECMs) and across timescales. Here, we leveraged recent advances in lattice light-sheet microscopy to quantitatively explore the three-dimensional morphodynamics of migrating T cells at high spatio-temporal resolution. We first developed a new shape descriptor based on spherical harmonics, incorporating key polarization information of the uropod. We found that the shape space of T cells is low-dimensional. At the behavioural level, run-and-stop migration modes emerge at approximately 150 s, and we mapped the morphodynamic composition of each mode using multiscale wavelet analysis, finding 'stereotyped' motifs. Focusing on the run mode, we found morphodynamics oscillating periodically (every approx. 100 s) that can be broken down into a biphasic process: front-widening with retraction of the uropod, followed by a rearward surface motion and forward extension, where intercalation with the ECM in both of these steps likely facilitates forward motion. Further application of these methods may enable the comparison of T cell migration across different conditions (e.g. differentiation, activation, tissues and drug treatments) and improve the precision of immunotherapeutic development.
ISSN:1742-5662
1742-5689
1742-5662
DOI:10.1098/rsif.2022.0081